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Abstract:    This paper proposes a practical algorithm for systematically generating strong Boolean functions (f:GF(2)n→GF(2)) 
with cryptographic meaning. This algorithm takes bent function as input and directly outputs the resulted Boolean function in 
terms of truth table sequence. This algorithm was used to develop two classes of balanced Boolean functions, one of which has 
very good cryptographic properties: nl(f)=22k−1−2k+2k−2 (n=2k), with the sum-of-squares avalanche characteristic of f satisfying 
σf=24k+23k+2+23k+23k−2 and the absolute avalanche characteristic of ∆f satisfying ∆f=2k+1. This is the best result up to now compared 
to existing ones. Instead of bent sequences, starting from random Boolean functions was also tested in the algorithm. Experimental 
results showed that starting from bent sequences is highly superior to starting from random Boolean functions. 
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INTRODUCTION 
 

A variety of desirable criteria for functions have 
been identified: balancedness, local and global ava-
lanche characteristics, high nonlinearity, etc. These 
properties are also very important for cryptographic 
purpose. Obtaining optimal tradeoffs among so many 
properties is hard. If we take into account more crite-
ria, it is more difficult to generate Boolean functions 
satisfying those properties purely by constructive 
algebraic methods. How to construct Boolean func-
tions with good properties has received a lot of atten-
tion (Clark et al., 2002; Dobbertin, 1995; Millan et al., 
1998; 1999; Kim et al., 1991). 

A Boolean function f:GF(2)n→GF(2) is called 
balanced, if the probability that the value of f equals to 
one is exactly one half, for all possible values of input 
vector. Webster and Tavares (1985) combined the 
completeness and avalanche properties into the Strict 
Avalanche Criterion (SAC). A Boolean function is 
said to satisfy the SAC if complementing a single bit 

results in changing the output bit with probability 
exactly one half. Preneel et al.(1990) introduced the 
propagation criterion of degree k [PC of degree k or 
PC(k)], which generalizes the SAC. A function satis-
fies PC(k) if by complementing at most k bits the 
output changes with probability of exactly one half. 
Although the SAC and PC are very important con-
cepts in designing cryptographic functions employed 
by encryption and hash functions, they capture only 
local properties of the function. In order to improve 
the overall analysis of cryptographically strong func-
tions, Zhang and Zheng (1995) introduced the con-
cepts of Global Avalanche Characteristic (GAC) and 
proposed two indicators related to GAC: the absolute 
indicator ∆f and the sum-of-squares indicator σf. 
Those two criteria overcome the shortcomings of the 
SAC. 

The nonlinearity of a Boolean function f is de-
fined as the minimum Hamming distance from f to all 
the affine functions defined on GF(2)n→GF(2). It is 
also an important cryptographic criteria for Boolean 
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functions. Rothaus (1976) showed that for any even n, 
the maximum nonlinearity achievable for any Boo-
lean function is 2n−1−2n/2−1. But these functions are not 
balanced. How to construct balanced Boolean func-
tions on even number of variables with very high 
nonlinearity was considered by Dobbertin (1995). 

As the balanced Boolean functions with good 
global avalanche characteristics and high nonlinearity 
can be applied as building blocks of symmetric 
crypto-systems to resist cryptanalytic attack, it is 
important to provide an effective and flexible design 
tool. In the past, most options for Boolean function 
design have been random generation and direct con-
struction. Both methods have drawbacks. In this paper, 
we start from bent sequences to construct balanced 
Boolean functions using an in situ recursive algorithm 
which can obtain balanced Boolean functions with 
very good global avalanche characteristics and high 
nonlinearity. 

 
 

RELATED WORKS 
 

Zhang and Zheng (1995) proposed two 
indicators related to GAC: the absolute indicator and 
the sum-of-squares indicator. The absolute indicator 
is defined by  
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tion function. 
Computing bounds of the two indicators for 

various classes of Boolean functions is of great im-
portance. The smaller σf, ∆f, the better the GAC of a 
function. Zhang et al. obtained some bounds from the 
definitions of the two indicators: 22n≤σf≤23n, 0≤∆f≤23n. 
Son et al.(1998) proved that for n≥3, σf≥22n+2n+3 and 
∆f≥8, when f is balanced. Also for balanced Boolean 
functions, Sung et al.(1999) proved that 
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if the function satisfies PC with respect to t vectors. 
A function f:GF(2)n→GF(2), n=even number is 

called bent function, if for any ω∈GF(2)n, 
/ 2ˆ ( ) 2 ,nF ω = ± where ˆ ( )F ω  is the Walsh transform   

of  function ˆ ( ),f ω   i.e.,  
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( )ˆ ( ) ( 1) .f xf x = −  Note that bent functions have highest 
nonlinearity when nl(f)=2n−1−2n/2−1. The nonlinearity 
of a Boolean function f is defined as the minimum 
distance from f to all the affine functions   defined     
on GF(2)n→GF(2), i.e., nl(f)=2n−1− ˆmax | ( ) | / 2.

w
F ω  

And also that if a Boolean function is bent, σf=22n, 
∆f=0 (Zhang and Zheng, 1995). 

The problem of constructing Boolean functions 
which satisfy two or more design criteria seems to be 
a difficult task. There many works focussed on this 
area. Among them, many papers started from bent 
functions to get cryptographically desired Boolean 
functions, because of their relatively high nonlinearity, 
good PC and other properties. Meier and Staffelbach 
(1989) showed how complementing a set of 2k−1 
(n=2k) bits in the truth table of f(x) would yield bal-
anced Boolean functions with good nonlinearity. 
Stanica (2004) used bent functions to construct 
“good” Boolean functions with the following proper-
ties: f(x) is balanced, and satisfies the SAC when 
nl(f)=22k−1−2k, σf=24k+3×23k+1. 

In this paper, we also start from bent sequences 
to construct balanced Boolean functions using an in 
situ recursive algorithm with indicator σf being used 
as control parameter. A class of Boolean functions 
with best trade-offs were obtained with the following 
properties: f(x) is balanced, and satisfies the propaga-
tion criterion with nl(f)=22k−1−2k, σf=24k+3×23k+1, 
∆f=2k+1. 
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STUDY ON THE GAC OF BOOLEAN FUNC-
TIONS 
 

In this section, we study in which way the GAC 
property of a given Boolean function can be changed, 
when one or two bits in its truth table are comple-
mented. We first define gk(x) and 

1 2, ( )k kh x  to repre-

sent the changed Boolean functions when one and two 
bits of f(x) are changed, respectively. 
Definition 1    Let f(x) be a Boolean function defined 
on GF(2)n→GF(2), with gk(x) and 

1 2, ( )k kh x  being 

defined as follows: 
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where x∈GF(2). 

Then by comparing the GAC property of gk(x) 
and  

1 2, ( )k kh x  with those of f(x), the change rule of 

∆f(a) will be obtained. 
Theorem 1    Let gk(x), 

1 2, ( )k kh x  be defined as in 

Definition 1. Then there will be 
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,1 2
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Proof    As pointed out by Millan et al.(1999), any 
single truth table change causes ∆f(a) changing −2 or 
2; any two changes cause changing −4,  4 or 0. So it is 
easy to find that the results above can be proved. 

The following theorem shows how to modify the 
value of ∆f(a) of a Boolean function that has been 
altered in a single truth table position, with complex-
ity O(2n). 
Theorem 2     Let gk(x) be defined as in Definition 1. 
Then each value of ∆g(a), ∆g(a)=∆f(a)+∆(a), can be 
obtained as follows: if f(xk)=f(xk⊕a), then ∆(a)=−4, 
else ∆(a)=+4. 
Proof    When f(xk)=f(xk⊕a), it follows that 

( ) ( )( 1) 1,k kf x f x a+ ⊕− =  the square of which contributes 
to the sum of σf. Changing the value of f(xk) changes 

this contribution to −1 in two places, so ∆g(a)−∆f(a)= 
−4. Similarly, when f(xk)≠f(xk⊕a), ∆g(a)−∆f(a)=+4. 

Now considering the definition of the 
sum-of-squares indicator, we can see that the 
sum-of-square indicator σg/(σh) of 

1 2,( ) /( ( ))k k kg x h x  

can be derived from σf. We first divide the value space 
of a into the following subsets as Definition 2 shows. 
Definition 2    A Boolean function f(x) is defined on 
GF(2)n→GF(2). Define ∆+, ∆− and ∆0 as follows: 
 
∆+={a: ∆f(a)>0}, ∆−={a: ∆f(a)=0}, ∆0={a: ∆f(a)=0}. 
 

In order to compute the number of times when 
equation f(x)=f(x⊕a) holds within ∆+ and ∆−, define 

1
+∆  and 1

−∆  as follows: 
Definition 3    Let xk be a constant input vector de-
fined on GF(2)n. Define 1

+∆  and 1
−∆  as follows: 
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Definition 4    Let gk(x) be defined as in Definition 1. 
If 1

1 1#{ } 2 ,n+ − −∆ ∆ >∪ then we say that is a ‘good 
change’ of f(x). Define the ‘goodness’ of gk(x) as 
G(g): 
 

1
1 1( ) #{ } 2nG g + − −= ∆ ∆ −∪  

 
in order to evaluate how ‘good’ gk(x) is. A function 
with larger G(g) is said to be ‘better’ than another one. 
Definition 5    Let xk−1 and  xk−2 be two constant input 
vectors both defined on GF(2)n. Define 0

+∆ , 0
−∆ , 2

+∆ , 

2
−∆ , 3

+∆  and 3
−∆  as follows: 
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Definition 6    Let 
1 2, ( )k kh x  be defined as in Defini-

tion 1. If 
 

2 2 3 3 0 0#{ } #{ }+ − + − + −∆ ∆ > ∆ ∆ ∆ ∆∪ ∪ ∪ ∪  
 

holds, we say that 
1 2, ( )k kh x  is a ‘good change’ of f(x). 

Define the ‘goodness’ of 
1 2, ( )k kh x  as G(h): 
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in order to evaluate how ‘good’ 

1 2, ( )k kh x  is. A func-

tion with larger G(h) is said to be ‘better’ than another 
one. 

Obviously, the definition of ‘goodness’ of 

1 2, ( )k kh x  can lead to an explicit evaluation of
1 2, ( )k kh x . 

Thus different 
1 2, ( )k kh x  can be compared with each 

other using “goodness” as the parameter. 
 
 

THE IN SITU RECURSIVE ALGORITHM 
 

In this section, we describe our in situ recursive 
algorithm in detail. A technique called hill climbing 
was introduced by Millan et al.(1997). The basic idea 
of hill climbing is to slightly alter a given Boolean 
function so that the property of interest, such as 
nonlinearity, can be improved. Their results showed 
that hill climbing could considerably improve the 
nonlinearity of randomly generated Boolean func-
tions. Based on this basic idea, we come up with our 
in situ recursive algorithm to achieve better results. 
Many properties of interests, such as nonlinearity, 
GAC property, are considered at the same time. In our 
algorithm, the change to the truth table is determined 
by the parameter “goodness” defined in the above 
section. This is critical to the final results we can 
obtain. Instead of starting from random Boolean 
functions, bent function is chosen as the start point. 

As mentioned in Section 1, bent functions have 
very good properties, such as nonlinearity and GAC 
property. But bent functions are not balanced. 
Rothaus (1976) proved that every bent sequence of 
length 22k had hamming weight 22k−1±2k−1 and proved 
the following theorem. 
Theorem 3    For an even number n of arguments bent 

functions are constructed as follows: Let n=2m. Then 
functions of the form f(x1, x2, …, xn)=g(x1, x2, …, 
xm)+x1xm+1+x2xm+2+…+xmxn are bent, where g(x1, x2, 
…, xm) is a completely arbitrary function of m vari-
ables. 

Obviously, Theorem 3 leads to an explicit con-
struction of bent functions, though many other con-
struction methods also exist. In our algorithm, we use 
this method to construct initially bent functions. 

Simply changing 2k−1 bits within the bent se-
quence can obviously cause the function to be bal-
anced. But it is computationally intensive to exhaus-
tively alter all 

2

2 1 1
2
2 2

k

k kC
−

− −+
 truth table positions and 

compute the value of control indicator σf every time. 
A fast systematic method is adopted in our algorithm 
instead of this cumbersome one. The method com-
plements 2-bit each time until the sequence is bal-
anced. It is easy to see that there are only 

2 1 1 2 1 1 2 1 2
2 2 2
2 2 2 2 2 2 2k k k k k kC C C− − − − − −+ + − +

⋅ …  rounds needed. And 

the computation of σf needs to be executed only once. 
A new approach is used to determining bit posi-

tions in a function’s truth table during each round. 
The two positions in the truth table to be changed are 
chosen according to the value of ‘goodness’ as de-
fined in Definition 6. It is important to note that in this 
way we can avoid computing the value of σf, which is 
highly time consuming. 

After the sequence is balanced, we can then 
compute the value of σf. We will then check whether 
the GAC property can be improved while maintaining 
the balancedness of the resulted sequence. This means 
we will choose two bits with opposite value and then 
complement these two bits. The results indicated that 
no improvement can be made to the resulted se-
quence. 

So the in situ recursive algorithm takes as its 
input a Boolean functions binary truth table. A bent 
sequence is firstly generated as the input of the in situ 
recursive algorithm using Theorem 3. The algorithm 
then tests every two-bit pairs each time within the 
bent sequence to find a 

1 2, ( )k kh x  with highest ‘good-

ness’, and then complements the bent sequence at the 
positions given by resulted k1 and k2. Use the newly 
obtained sequence as the current input of the algo-
rithm and repeat the same procedure, until the se-
quence is balanced. 
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The following is the pseudo code of the in situ 
recursive algorithm. 

 
In situ recursive algorithm: 
1. Generate a 2k-variable bent sequence (k≥3) 

using the above mentioned Theorem 3. Compute ∆f, 
a∈GF(2)n, a≠0, and σf, and store them. Compute 
hamming weight ωt(f). According to the value of ∆f, 
create ∆+, ∆− and ∆0. 

2. If ωt(f)=22k−1, then go to Step 8. 
3. If ωt(f)>22k−1, then go to Step 6. 
4. For k1=1, …, 2n−1 and f(k1)=0, do 

a) for k2=k1+1, …, 2n−1 and f(k2)=0, do 
i. Compute the value of 

3 3 0 0 2 2: #{ } #{ }.X + − + − + −∆ ∆ ∆ ∆ − ∆ ∆∪ ∪ ∪ ∪
                        ii. Compare X with currently smallest         

one and keep the smaller one as well as 
its bit positions. 
iii. k2=k2+1 

b) k1=k1+1 
5. Complement the resulted bit positions, up-

date ωt(f)=ωt(f)−4, and update the value of 
∆f, by applying Theorem 2 twice. Update ∆+, 
∆− and ∆0. And go to Step 2. 

6. For k1=1, …, 2n−1 and f(k1)=1, do 
a) for k2=k1+1, …, 2n−1 and f(k2)=1, do 

i. compute the value  

3 3 0 0 2 2: #{ } #{ }.X + − + − + −∆ ∆ ∆ ∆ − ∆ ∆∪ ∪ ∪ ∪  
ii. Compare X with currently smallest 
one and keep the smaller one as well as 
its bit positions. 
iii. k2=k2+1 

b) k1=k1+1 
7. Go to Step 5. 
8.   Compute and output the value of σf. Output 

the resulted sequence. 
 
 
 
 
 
 
 
 
 
 
 

EXPERIMENT RESULTS AND DISCUSSION 
 

Two classes of solutions are systematically 
generated by the proposed algorithm, namely Class 1 
and Class 2, respectively. It was found that Class 2 
holds the same properties as the results obtained by 
Zhang and Zheng (1995) by construction on V2k using 
Eq.(5). In other word, these Boolean functions are of 
the same kind. And Class 1 obviously outperforms 
Class 2 with higher nonlinearity and smaller the 
sum-of-squares indicator σf. We have following re-
sults. 
Result    Let the results be given by the above in situ 
algorithm. Then will be either Class 1 or Class 2: 
 
Class 1: 

1. f is balanced, 
2. The nonlinearity of f is nl(f)=22k−1−2k+2k−2, 
3. The sum-of-squares indicator of f is 

σf=24k+23k+2+23k+23k−2, 
4. The absolute indicator of f is ∆f=2k+1, 
5. f satisfies the propagation criterion with re-

spect to 22k−2k+1+2k−3−1 nonzero vectors. 
 
Class 2: 

1. f is balanced, 
2. The nonlinearity of f is nl(f)=22k−1−2k, 
3. The sum-of-squares indicator of f is 

σf=24k+23k+2+23k+1, 
4. The absolute indicator of f is ∆f=2k+1, 
5. f satisfies the propagation criterion with re-

spect to 22k−2k+1+2k−1−1 nonzero vectors. 
 
We now present examples of the results obtained 

by this algorithm with n=6, 8, 10, 12, respectively. 
Table 1 shows the sample results (Class 1). Note that 
the test results indicated that all the Boolean functions  

 
 
 
 
 
 
 
 
 
 
 

Table 1  Sample results of the in situ recursive algorithm 
 

6 8 10 12 
n 

1 2 1 2 1 2 1 2 

Balancedness yes yes yes yes yes yes yes yes 

Nonlinearity 26 24 116 112 488 480 2000 1984 

σf 6784 7168 87040 90112 1220608 1245184 18153472 18350080 

∆f 16 16 32 32 64 64 128 128 

Nonzero vectors 
not satisfying PC 15 12 30 24 60 48 120 96 
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with the same n are different from each other. 
Note that Class 2 appears more frequently than 

Class 1. Fig.1 shows the proportion of two kinds of 
solutions when n=6, 8, respectively. And it seems that 
the appearance of Class 1 depends on its start bent 
function, though the relationship between them is not 
explicit. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Clark et al.(2002) compared the nonlinearity of 

balanced Boolean functions as Table 2 shows. Com-
pared with other results provided in Table 2, the 
nonlinearity character of Class 1 is very good, and can 
be systematically generated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Many works aimed at constructing Boolean 
functions with very good GAC properties. Some of 
them are listed in Table 3 for the comparison with 
Class 1. 

Clark et al.(2002) used a simulated annealing 
method to search and find cryptographically good 
Boolean functions described in Section 3, Table 4 
shows that when n=8, this paper got better result on 
the value of σf and that our result outperforms their 
results when n=10, and that they did not provide any 
results when n>10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For comparison, we also started from random 

generated balanced Boolean functions to search for 
strong Boolean functions. Table 4 shows the proper-
ties of randomly generated Boolean functions. Simi-
larly, truth table modifying methods were used while 
keeping balancedness. We found that all properties 
mentioned above were far from good. For example, 
when n=8, the value of σf is typically larger than 
100000, and ∆f≥40, with around 160 nonzero vectors 
not satisfying PC. And the nonlinearity was typically 
around 110. No Boolean functions were found as 
good as the better results obtained by our algorithm. 

 
 

CONCLUSION 
 

We have presented a highly efficient in situ re-
cursive algorithm to find strong Boolean functions for 
cryptographic applications, and this algorithm can be 

 
n 6 8 10 12 

Lowest upper bound 26 118 494 2014 

Best known example 
(Hou, 1993; Patterson and 
Wiedemann, 1983) 

26 116 492 2010 

Dobbertin’s conjecture 
(Dobbertin, 1995) 26 116 492 2010 

Bent concatenation 24 112 480 1984 
Random generated � 112 472 1954 
Hill climbing algorithm � 114 476 1960 
Genetic algorithm 
(Millan et al., 1998) 26 116 484 1976 

NLT (Clark et al., 2002) 26 116 486 1992 
ACT (Clark et al., 2002) 26 116 484 1986 
Our algorithm 26 116 488 2000 

Table 2  Comparing the nonlinearity of balanced
Boolean function 

Table 3  GAC properties comparison 
 

GAC properties 
Method 

σf ∆f 
Our algorithm 24k+23k+2+23k+23k−2 2k+1 
Zhang and Zheng (1995) 24k+3⋅23k+1 2k+1 
Stanica and Sung (2001) 24k+1≤σf≤24k+2 2k+1 
Stanica (2004) 24k+3⋅23k+1 2k+1 
Stanica (2002) 24k+2 2k+1 

 

 
n 6 8 10 12 

Balancedness yes yes yes yes 
Nonlinearity ≤22 ≤106 ≤464 ≤1940 

σf >104 >17×104 >34×105 >46×106 
∆f ≥24 ≥48 ≥136 ≥288 

Nonzero vec-
tors not satis-
fying PC 

>40 >206 >929 >3900 

Table 4  Properties of randomly generated Boolean 
functions 

Fig.1  The proportion of Class 1 vs Class 2 
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a good designing tool of cryptographically good 
Boolean functions. With this algorithm we have ob-
tained currently best trade-off with nl(f)=22k−1−2k+ 
2k−2 and the sum-of-squares avalanche characteristic 
of f satisfies σf=24k+23k+2+23k+23k−2, the absolute 
avalanche characteristic of f satisfies ∆f=2k+1. 

Several open questions remain. One is why only 
two kinds of results exist. The relationship between 
our results and bent functions constructed by Theo-
rem 3 should be further explored. Another is whether 
Class 1 can lead to a construction of S-Box with 
nonlinearity larger than 80, which is currently the 
highest. Researches on these topics are ongoing. 
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