
Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 358

On the construction of cryptographically strong Boolean
functions with desirable trade-off

REN Kui1, PARK Jaemin2, KIM Kwangjo2

(1ECE Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA)
(2International Research Center for Information Security, Information and Communication University, Daejeon 305-714, Republic of Korea)

E-mail: kren@ece.wpi.edu; jaemin@icu.ac.kr; kkj@icu.ac.kr
Received May 10, 2004; revision accepted Feb. 11, 2005

Abstract: This paper proposes a practical algorithm for systematically generating strong Boolean functions (f:GF(2)n→GF(2))
with cryptographic meaning. This algorithm takes bent function as input and directly outputs the resulted Boolean function in
terms of truth table sequence. This algorithm was used to develop two classes of balanced Boolean functions, one of which has
very good cryptographic properties: nl(f)=22k−1−2k+2k−2 (n=2k), with the sum-of-squares avalanche characteristic of f satisfying
σf=24k+23k+2+23k+23k−2 and the absolute avalanche characteristic of ∆f satisfying ∆f=2k+1. This is the best result up to now compared
to existing ones. Instead of bent sequences, starting from random Boolean functions was also tested in the algorithm. Experimental
results showed that starting from bent sequences is highly superior to starting from random Boolean functions.

Key words: Boolean functions, Bent sequences, Nonlinearity, GAC, PC, Balancedness
doi:10.1631/jzus.2005.A0358 Document code: A CLC number: TP301.6

INTRODUCTION

A variety of desirable criteria for functions have
been identified: balancedness, local and global ava-
lanche characteristics, high nonlinearity, etc. These
properties are also very important for cryptographic
purpose. Obtaining optimal tradeoffs among so many
properties is hard. If we take into account more crite-
ria, it is more difficult to generate Boolean functions
satisfying those properties purely by constructive
algebraic methods. How to construct Boolean func-
tions with good properties has received a lot of atten-
tion (Clark et al., 2002; Dobbertin, 1995; Millan et al.,
1998; 1999; Kim et al., 1991).

A Boolean function f:GF(2)n→GF(2) is called
balanced, if the probability that the value of f equals to
one is exactly one half, for all possible values of input
vector. Webster and Tavares (1985) combined the
completeness and avalanche properties into the Strict
Avalanche Criterion (SAC). A Boolean function is
said to satisfy the SAC if complementing a single bit

results in changing the output bit with probability
exactly one half. Preneel et al.(1990) introduced the
propagation criterion of degree k [PC of degree k or
PC(k)], which generalizes the SAC. A function satis-
fies PC(k) if by complementing at most k bits the
output changes with probability of exactly one half.
Although the SAC and PC are very important con-
cepts in designing cryptographic functions employed
by encryption and hash functions, they capture only
local properties of the function. In order to improve
the overall analysis of cryptographically strong func-
tions, Zhang and Zheng (1995) introduced the con-
cepts of Global Avalanche Characteristic (GAC) and
proposed two indicators related to GAC: the absolute
indicator ∆f and the sum-of-squares indicator σf.
Those two criteria overcome the shortcomings of the
SAC.

The nonlinearity of a Boolean function f is de-
fined as the minimum Hamming distance from f to all
the affine functions defined on GF(2)n→GF(2). It is
also an important cryptographic criteria for Boolean

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 359

functions. Rothaus (1976) showed that for any even n,
the maximum nonlinearity achievable for any Boo-
lean function is 2n−1−2n/2−1. But these functions are not
balanced. How to construct balanced Boolean func-
tions on even number of variables with very high
nonlinearity was considered by Dobbertin (1995).

As the balanced Boolean functions with good
global avalanche characteristics and high nonlinearity
can be applied as building blocks of symmetric
crypto-systems to resist cryptanalytic attack, it is
important to provide an effective and flexible design
tool. In the past, most options for Boolean function
design have been random generation and direct con-
struction. Both methods have drawbacks. In this paper,
we start from bent sequences to construct balanced
Boolean functions using an in situ recursive algorithm
which can obtain balanced Boolean functions with
very good global avalanche characteristics and high
nonlinearity.

RELATED WORKS

Zhang and Zheng (1995) proposed two
indicators related to GAC: the absolute indicator and
the sum-of-squares indicator. The absolute indicator
is defined by

(2) , 0
max ()

nf f
a GF a

a
∈ ≠

∆ = ∆

and the sum-of-squares indicator by

2

(2)

(2)
n

f f
a GF

σ
∈

= ∆∑

where () ()

(2)

(1)
n

f x f x a
f

x GF

⊕ ⊕

∈

∆ = −∑ is the autocorrela-

tion function.
Computing bounds of the two indicators for

various classes of Boolean functions is of great im-
portance. The smaller σf, ∆f, the better the GAC of a
function. Zhang et al. obtained some bounds from the
definitions of the two indicators: 22n≤σf≤23n, 0≤∆f≤23n.
Son et al.(1998) proved that for n≥3, σf≥22n+2n+3 and
∆f≥8, when f is balanced. Also for balanced Boolean
functions, Sung et al.(1999) proved that

2 62 2 (2 1)n n
f tσ ≥ + − − ,

if 30 2 2 1n nt −≤ ≤ − − , t=odd
2 62 2 (2 2)n n

f tσ ≥ + − + ,

if 30 2 2 1n nt −≤ ≤ − − , t=even

211 2
2 1

n
f n t

σ  ≥ + − − 
,

if 302 2 1 2 2n n nt−− − ≤ ≤ −

if the function satisfies PC with respect to t vectors.
A function f:GF(2)n→GF(2), n=even number is

called bent function, if for any ω∈GF(2)n,
/ 2ˆ () 2 ,nF ω = ± where ˆ ()F ω is the Walsh transform

of function ˆ (),f ω i.e.,
(2)

ˆˆ() ()(1)
n

x

x GF

F f x ωω
∈

= −∑ and

()ˆ () (1) .f xf x = − Note that bent functions have highest
nonlinearity when nl(f)=2n−1−2n/2−1. The nonlinearity
of a Boolean function f is defined as the minimum
distance from f to all the affine functions defined
on GF(2)n→GF(2), i.e., nl(f)=2n−1− ˆmax | () | / 2.

w
F ω

And also that if a Boolean function is bent, σf=22n,
∆f=0 (Zhang and Zheng, 1995).

The problem of constructing Boolean functions
which satisfy two or more design criteria seems to be
a difficult task. There many works focussed on this
area. Among them, many papers started from bent
functions to get cryptographically desired Boolean
functions, because of their relatively high nonlinearity,
good PC and other properties. Meier and Staffelbach
(1989) showed how complementing a set of 2k−1
(n=2k) bits in the truth table of f(x) would yield bal-
anced Boolean functions with good nonlinearity.
Stanica (2004) used bent functions to construct
“good” Boolean functions with the following proper-
ties: f(x) is balanced, and satisfies the SAC when
nl(f)=22k−1−2k, σf=24k+3×23k+1.

In this paper, we also start from bent sequences
to construct balanced Boolean functions using an in
situ recursive algorithm with indicator σf being used
as control parameter. A class of Boolean functions
with best trade-offs were obtained with the following
properties: f(x) is balanced, and satisfies the propaga-
tion criterion with nl(f)=22k−1−2k, σf=24k+3×23k+1,
∆f=2k+1.

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 360

STUDY ON THE GAC OF BOOLEAN FUNC-
TIONS

In this section, we study in which way the GAC
property of a given Boolean function can be changed,
when one or two bits in its truth table are comple-
mented. We first define gk(x) and

1 2, ()k kh x to repre-

sent the changed Boolean functions when one and two
bits of f(x) are changed, respectively.
Definition 1 Let f(x) be a Boolean function defined
on GF(2)n→GF(2), with gk(x) and

1 2, ()k kh x being

defined as follows:

() 1
()

()
k

k
k

f x x x
g x

f x x x
⊕ =

=  ≠

1 2

1 2
,

1 2

() 1 , ,
()

() , ,
k

k k
k

f x x x k k k
h x

f x x x k k k
⊕ = =

=  ≠ =

where x∈GF(2).

Then by comparing the GAC property of gk(x)
and

1 2, ()k kh x with those of f(x), the change rule of

∆f(a) will be obtained.
Theorem 1 Let gk(x),

1 2, ()k kh x be defined as in

Definition 1. Then there will be

() () 4,
kg fa a− ∆ − ∆ = for any a∈GF(2)n

,1 2
() () 8

k kh fa a− ∆ − ∆ = or 0, for any a∈GF(2)n

Proof As pointed out by Millan et al.(1999), any
single truth table change causes ∆f(a) changing −2 or
2; any two changes cause changing −4, 4 or 0. So it is
easy to find that the results above can be proved.

The following theorem shows how to modify the
value of ∆f(a) of a Boolean function that has been
altered in a single truth table position, with complex-
ity O(2n).
Theorem 2 Let gk(x) be defined as in Definition 1.
Then each value of ∆g(a), ∆g(a)=∆f(a)+∆(a), can be
obtained as follows: if f(xk)=f(xk⊕a), then ∆(a)=−4,
else ∆(a)=+4.
Proof When f(xk)=f(xk⊕a), it follows that

() ()(1) 1,k kf x f x a+ ⊕− = the square of which contributes
to the sum of σf. Changing the value of f(xk) changes

this contribution to −1 in two places, so ∆g(a)−∆f(a)=
−4. Similarly, when f(xk)≠f(xk⊕a), ∆g(a)−∆f(a)=+4.

Now considering the definition of the
sum-of-squares indicator, we can see that the
sum-of-square indicator σg/(σh) of

1 2,() /(())k k kg x h x

can be derived from σf. We first divide the value space
of a into the following subsets as Definition 2 shows.
Definition 2 A Boolean function f(x) is defined on
GF(2)n→GF(2). Define ∆+, ∆− and ∆0 as follows:

∆+={a: ∆f(a)>0}, ∆−={a: ∆f(a)=0}, ∆0={a: ∆f(a)=0}.

In order to compute the number of times when
equation f(x)=f(x⊕a) holds within ∆+ and ∆−, define

1
+∆ and 1

−∆ as follows:
Definition 3 Let xk be a constant input vector de-
fined on GF(2)n. Define 1

+∆ and 1
−∆ as follows:

{ }1 : () (),k ka f x f x a a+ +∆ = = ⊕ ∈ ∆

{ }1 : () (),k ka f x f x a a− −∆ = ≠ ⊕ ∈ ∆

Definition 4 Let gk(x) be defined as in Definition 1.
If 1

1 1#{ } 2 ,n+ − −∆ ∆ >∪ then we say that is a ‘good
change’ of f(x). Define the ‘goodness’ of gk(x) as
G(g):

1
1 1() #{ } 2nG g + − −= ∆ ∆ −∪

in order to evaluate how ‘good’ gk(x) is. A function
with larger G(g) is said to be ‘better’ than another one.
Definition 5 Let xk−1 and xk−2 be two constant input
vectors both defined on GF(2)n. Define 0

+∆ , 0
−∆ , 2

+∆ ,

2
−∆ , 3

+∆ and 3
−∆ as follows:

{ }0
0 1 2: () (), , ,k ka f x f x a k k k a+∆ = = ⊕ = ∈ ∆

{ }0
0 1 2: () (), , ,k ka f x f x a k k k a−∆ = ≠ ⊕ = ∈ ∆

{ }2 1 2: () (), , ,k ka f x f x a k k k a+ +∆ = = ⊕ = ∈ ∆

{ }2 1 2: () (), , ,k ka f x f x a k k k a− −∆ = ≠ ⊕ = ∈ ∆

{ }3 1 2: () (), , ,k ka f x f x a k k k a+ +∆ = = ⊕ = ∈ ∆

{ }3 1 2: () (), , ,k ka f x f x a k k k a− −∆ = ≠ ⊕ = ∈ ∆

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 361

Definition 6 Let
1 2, ()k kh x be defined as in Defini-

tion 1. If

2 2 3 3 0 0#{ } #{ }+ − + − + −∆ ∆ > ∆ ∆ ∆ ∆∪ ∪ ∪ ∪

holds, we say that
1 2, ()k kh x is a ‘good change’ of f(x).

Define the ‘goodness’ of
1 2, ()k kh x as G(h):

2 2 3 3 0 0() #{ } #{ }G h + − + − + −= ∆ ∆ − ∆ ∆ ∆ ∆∪ ∪ ∪ ∪

in order to evaluate how ‘good’

1 2, ()k kh x is. A func-

tion with larger G(h) is said to be ‘better’ than another
one.

Obviously, the definition of ‘goodness’ of

1 2, ()k kh x can lead to an explicit evaluation of
1 2, ()k kh x .

Thus different
1 2, ()k kh x can be compared with each

other using “goodness” as the parameter.

THE IN SITU RECURSIVE ALGORITHM

In this section, we describe our in situ recursive
algorithm in detail. A technique called hill climbing
was introduced by Millan et al.(1997). The basic idea
of hill climbing is to slightly alter a given Boolean
function so that the property of interest, such as
nonlinearity, can be improved. Their results showed
that hill climbing could considerably improve the
nonlinearity of randomly generated Boolean func-
tions. Based on this basic idea, we come up with our
in situ recursive algorithm to achieve better results.
Many properties of interests, such as nonlinearity,
GAC property, are considered at the same time. In our
algorithm, the change to the truth table is determined
by the parameter “goodness” defined in the above
section. This is critical to the final results we can
obtain. Instead of starting from random Boolean
functions, bent function is chosen as the start point.

As mentioned in Section 1, bent functions have
very good properties, such as nonlinearity and GAC
property. But bent functions are not balanced.
Rothaus (1976) proved that every bent sequence of
length 22k had hamming weight 22k−1±2k−1 and proved
the following theorem.
Theorem 3 For an even number n of arguments bent

functions are constructed as follows: Let n=2m. Then
functions of the form f(x1, x2, …, xn)=g(x1, x2, …,
xm)+x1xm+1+x2xm+2+…+xmxn are bent, where g(x1, x2,
…, xm) is a completely arbitrary function of m vari-
ables.

Obviously, Theorem 3 leads to an explicit con-
struction of bent functions, though many other con-
struction methods also exist. In our algorithm, we use
this method to construct initially bent functions.

Simply changing 2k−1 bits within the bent se-
quence can obviously cause the function to be bal-
anced. But it is computationally intensive to exhaus-
tively alter all

2

2 1 1
2
2 2

k

k kC
−

− −+
 truth table positions and

compute the value of control indicator σf every time.
A fast systematic method is adopted in our algorithm
instead of this cumbersome one. The method com-
plements 2-bit each time until the sequence is bal-
anced. It is easy to see that there are only

2 1 1 2 1 1 2 1 2
2 2 2
2 2 2 2 2 2 2k k k k k kC C C− − − − − −+ + − +

⋅ … rounds needed. And

the computation of σf needs to be executed only once.
A new approach is used to determining bit posi-

tions in a function’s truth table during each round.
The two positions in the truth table to be changed are
chosen according to the value of ‘goodness’ as de-
fined in Definition 6. It is important to note that in this
way we can avoid computing the value of σf, which is
highly time consuming.

After the sequence is balanced, we can then
compute the value of σf. We will then check whether
the GAC property can be improved while maintaining
the balancedness of the resulted sequence. This means
we will choose two bits with opposite value and then
complement these two bits. The results indicated that
no improvement can be made to the resulted se-
quence.

So the in situ recursive algorithm takes as its
input a Boolean functions binary truth table. A bent
sequence is firstly generated as the input of the in situ
recursive algorithm using Theorem 3. The algorithm
then tests every two-bit pairs each time within the
bent sequence to find a

1 2, ()k kh x with highest ‘good-

ness’, and then complements the bent sequence at the
positions given by resulted k1 and k2. Use the newly
obtained sequence as the current input of the algo-
rithm and repeat the same procedure, until the se-
quence is balanced.

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 362

The following is the pseudo code of the in situ
recursive algorithm.

In situ recursive algorithm:
1. Generate a 2k-variable bent sequence (k≥3)

using the above mentioned Theorem 3. Compute ∆f,
a∈GF(2)n, a≠0, and σf, and store them. Compute
hamming weight ωt(f). According to the value of ∆f,
create ∆+, ∆− and ∆0.

2. If ωt(f)=22k−1, then go to Step 8.
3. If ωt(f)>22k−1, then go to Step 6.
4. For k1=1, …, 2n−1 and f(k1)=0, do

a) for k2=k1+1, …, 2n−1 and f(k2)=0, do
i. Compute the value of

3 3 0 0 2 2: #{ } #{ }.X + − + − + −∆ ∆ ∆ ∆ − ∆ ∆∪ ∪ ∪ ∪
 ii. Compare X with currently smallest

one and keep the smaller one as well as
its bit positions.
iii. k2=k2+1

b) k1=k1+1
5. Complement the resulted bit positions, up-

date ωt(f)=ωt(f)−4, and update the value of
∆f, by applying Theorem 2 twice. Update ∆+,
∆− and ∆0. And go to Step 2.

6. For k1=1, …, 2n−1 and f(k1)=1, do
a) for k2=k1+1, …, 2n−1 and f(k2)=1, do

i. compute the value

3 3 0 0 2 2: #{ } #{ }.X + − + − + −∆ ∆ ∆ ∆ − ∆ ∆∪ ∪ ∪ ∪
ii. Compare X with currently smallest
one and keep the smaller one as well as
its bit positions.
iii. k2=k2+1

b) k1=k1+1
7. Go to Step 5.
8. Compute and output the value of σf. Output

the resulted sequence.

EXPERIMENT RESULTS AND DISCUSSION

Two classes of solutions are systematically
generated by the proposed algorithm, namely Class 1
and Class 2, respectively. It was found that Class 2
holds the same properties as the results obtained by
Zhang and Zheng (1995) by construction on V2k using
Eq.(5). In other word, these Boolean functions are of
the same kind. And Class 1 obviously outperforms
Class 2 with higher nonlinearity and smaller the
sum-of-squares indicator σf. We have following re-
sults.
Result Let the results be given by the above in situ
algorithm. Then will be either Class 1 or Class 2:

Class 1:

1. f is balanced,
2. The nonlinearity of f is nl(f)=22k−1−2k+2k−2,
3. The sum-of-squares indicator of f is

σf=24k+23k+2+23k+23k−2,
4. The absolute indicator of f is ∆f=2k+1,
5. f satisfies the propagation criterion with re-

spect to 22k−2k+1+2k−3−1 nonzero vectors.

Class 2:

1. f is balanced,
2. The nonlinearity of f is nl(f)=22k−1−2k,
3. The sum-of-squares indicator of f is

σf=24k+23k+2+23k+1,
4. The absolute indicator of f is ∆f=2k+1,
5. f satisfies the propagation criterion with re-

spect to 22k−2k+1+2k−1−1 nonzero vectors.

We now present examples of the results obtained

by this algorithm with n=6, 8, 10, 12, respectively.
Table 1 shows the sample results (Class 1). Note that
the test results indicated that all the Boolean functions

Table 1 Sample results of the in situ recursive algorithm

6 8 10 12
n

1 2 1 2 1 2 1 2

Balancedness yes yes yes yes yes yes yes yes

Nonlinearity 26 24 116 112 488 480 2000 1984

σf 6784 7168 87040 90112 1220608 1245184 18153472 18350080

∆f 16 16 32 32 64 64 128 128

Nonzero vectors
not satisfying PC 15 12 30 24 60 48 120 96

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 363

with the same n are different from each other.
Note that Class 2 appears more frequently than

Class 1. Fig.1 shows the proportion of two kinds of
solutions when n=6, 8, respectively. And it seems that
the appearance of Class 1 depends on its start bent
function, though the relationship between them is not
explicit.

Clark et al.(2002) compared the nonlinearity of

balanced Boolean functions as Table 2 shows. Com-
pared with other results provided in Table 2, the
nonlinearity character of Class 1 is very good, and can
be systematically generated.

Many works aimed at constructing Boolean
functions with very good GAC properties. Some of
them are listed in Table 3 for the comparison with
Class 1.

Clark et al.(2002) used a simulated annealing
method to search and find cryptographically good
Boolean functions described in Section 3, Table 4
shows that when n=8, this paper got better result on
the value of σf and that our result outperforms their
results when n=10, and that they did not provide any
results when n>10.

For comparison, we also started from random

generated balanced Boolean functions to search for
strong Boolean functions. Table 4 shows the proper-
ties of randomly generated Boolean functions. Simi-
larly, truth table modifying methods were used while
keeping balancedness. We found that all properties
mentioned above were far from good. For example,
when n=8, the value of σf is typically larger than
100000, and ∆f≥40, with around 160 nonzero vectors
not satisfying PC. And the nonlinearity was typically
around 110. No Boolean functions were found as
good as the better results obtained by our algorithm.

CONCLUSION

We have presented a highly efficient in situ re-
cursive algorithm to find strong Boolean functions for
cryptographic applications, and this algorithm can be

n 6 8 10 12

Lowest upper bound 26 118 494 2014

Best known example
(Hou, 1993; Patterson and
Wiedemann, 1983)

26 116 492 2010

Dobbertin’s conjecture
(Dobbertin, 1995) 26 116 492 2010

Bent concatenation 24 112 480 1984
Random generated � 112 472 1954
Hill climbing algorithm � 114 476 1960
Genetic algorithm
(Millan et al., 1998) 26 116 484 1976

NLT (Clark et al., 2002) 26 116 486 1992
ACT (Clark et al., 2002) 26 116 484 1986
Our algorithm 26 116 488 2000

Table 2 Comparing the nonlinearity of balanced
Boolean function

Table 3 GAC properties comparison

GAC properties
Method

σf ∆f
Our algorithm 24k+23k+2+23k+23k−2 2k+1
Zhang and Zheng (1995) 24k+3⋅23k+1 2k+1
Stanica and Sung (2001) 24k+1≤σf≤24k+2 2k+1
Stanica (2004) 24k+3⋅23k+1 2k+1
Stanica (2002) 24k+2 2k+1

n 6 8 10 12

Balancedness yes yes yes yes
Nonlinearity ≤22 ≤106 ≤464 ≤1940

σf >104 >17×104 >34×105 >46×106
∆f ≥24 ≥48 ≥136 ≥288

Nonzero vec-
tors not satis-
fying PC

>40 >206 >929 >3900

Table 4 Properties of randomly generated Boolean
functions

Fig.1 The proportion of Class 1 vs Class 2

Fr
eq

ue
nc

y

70

60

50

40

30

20

10

0
5000 6000 7000 8000 9000 88000 89000 90000

σf

Solution 1

Solution 2

Solution 1

Solution 2

n=8 n=6

86

170

17686

47850

Ren et al. / J Zhejiang Univ SCI 2005 6A(5):358-364 364

a good designing tool of cryptographically good
Boolean functions. With this algorithm we have ob-
tained currently best trade-off with nl(f)=22k−1−2k+
2k−2 and the sum-of-squares avalanche characteristic
of f satisfies σf=24k+23k+2+23k+23k−2, the absolute
avalanche characteristic of f satisfies ∆f=2k+1.

Several open questions remain. One is why only
two kinds of results exist. The relationship between
our results and bent functions constructed by Theo-
rem 3 should be further explored. Another is whether
Class 1 can lead to a construction of S-Box with
nonlinearity larger than 80, which is currently the
highest. Researches on these topics are ongoing.

References
Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.,

2002. Evolving Boolean Functions Satisfying Multiple
Criteria. International Conference on Cryptology in In-
dia−INDOCRYPT 2002, LNCS 2551, Springer-Verlag,
p.246-259.

Dobbertin, H., 1995. Construction of Bent Functions and
Balanced Boolean Functions with High Nonlinearity. Fast
Software Encryption−FSE’94, LNCS 1008, Springer-
Ver-lag, p.61-74.

Hou, X.D., 1993. Further results on the covering radii of the
Reed-Muller codes. Design, Codes and Cryptography,
3(2):167-177.

Kim, K., 1991. Construction of DES-like S-boxes Based on
Boolean Functions Satisfying the SAC. Advances in
Cryptology−Proc. of Asiacrypt’91, Lecture Notes in
Computer Science, Springer-Verlag, p.59-72.

Meier, W., Staffelbach, O., 1989. Nonlinearity Criteria for
Cryptographic Functions. Advances in Cryptol-
ogy−EUROCRYPT’89, LNCS 434, Springer-Verlag,
p.549-562.

Millan, W., Clark, A.J., Dawson, E., 1997. Smart Hill Climb-
ing Finds Better Boolean Functions. Workshop on Se-
lected Areas in Cryptology 1997, Workshop Record,
p.50-63.

Millan, W., Clark, A.J., Dawson, E., 1998. Heuristic Design of
Cryptographically Strong Balanced Boolean Functions.
Advance in Cryptology−EUROCRYPT’98, LNCS 1403,
Springer-Verlag, p.489-499.

Millan, W., Clark, A., Dawson, E., 1999. Boolean Function
Design Using Hill Climbing Methods. Australasian
Conference on Information Security and Pri-
vacy−ACISP’99, LNCS 1587, Springer-Verlag, p.1-11.

Patterson, N.J., Wiedemann, D.H., 1983. The covering radius
of the (215,6) Reed-Muller code is at least 16276. IEEE
Transactions on Information Theory, IT-29(3):354-356.

Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R.,
Vandewalle, J., 1990. Propagation Characteristics of
Boolean Functions. Advances in Cryptol-
ogy−EUROCRYPT’90, LNCS 473, Springer-Verlag,
p.161-173.

Rothaus, S., 1976. On bent functions. Journal of Combinato-
rial Theory, Ser. A, 20:300-305.

Son, J.J., Lim, J.I., Chee, S., Sung, S.H., 1998. Global ava-
lanche characteristics and nonlinearity of balanced Boo-
lean functions. Information Processing Letters, 65(3):
139-144.

Stanica, P., 2002. Nonlinearity, local and global avalanche
characteristics of balanced Boolean functions. Discrete
Mathematics, 248(1-3):181-193.

Stanica, P., 2004. Boolean functions with five controllable
cryptographic properties. Designs, Codes and Cryptog-
raphy, 31:147-157.

Stanica, P., Sung, S.H., 2001. Improving the nonlinearity of
certain balanced Boolean functions with good local and
global avalanche characteristics. Information Processing
Letters, 79(4):167-172.

Sung, S.H., Chee, S., Park, C., 1999. Global avalanche chara-
cteristics and propagation criterion of balanced Boolean
functions. Information Processing Letters, 69(1):21-24.

Webster, F., Tavares, S.E., 1985. On the Design of S-boxes.
Advances in Cryptology−CRYPTO’85, LNCS 218,
Springer-Verlag, p.523-534.

Zhang, X., Zheng, Y.L., 1995. GAC–the criterion of global
avalanche characteristics of cryptographic functions.
Journal of Universal Computer Science, 1(5):316-333.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

