
Threshold Password-Based Authentication
Using Bilinear Pairings?

Songwon Lee1, Kyusuk Han1, Seok-kyu Kang1, Kwangjo Kim1 and So Ran Ine2

1 Information and Communications University (ICU)
119, Munjiro, Yuseong-Gu, Daejeon, Korea

{swonlee, hankyusuk, redorb,kkj}@icu.ac.kr
2 NITZ. Corp.

San 14-1 Koejong-dong, Seo-gu, Daejon, Korea
srine@nitz.co.kr

Abstract. We present a new threshold password-based authentication
protocol that allows a roaming user(a user who accesses a network from
different client terminals) to download a private key from remote servers
with knowledge of only his identity and password. He does not need to
carry the smart card storing his private information. We aim that a pro-
tocol has to allow a user to get his private key from the servers, even
if some of the servers are compromised under the multi-server roaming
system. In this paper, we firstly suggest a threshold password-only roam-
ing protocol using (k,n)-threshold scheme which only k honest servers or
more are engaged to reconstruct a secret key. Our scheme is based on
bilinear pairings which could be built from Weil pairing or Tate pairing.

1 Introduction

With rapid development on the Internet a user Bob can easily access the network
to get some services from a service provider, or to retrieve his sensitive private
data stored in the server previously. In that case, he has to convince the server
that he is a really legitimate user. To verify the identity(ID for short) of a
user many real systems use password-based authentication. The fundamental
problems with passwords come from the fact that most users’ passwords are
drawn from a relatively small spaces and are easily memorable, which also means
that the password may be easily guessed by an attacker.

Let us assume that a roaming user accesses a network from different client
terminals to download a private key from remote servers with knowledge of only
his ID and password. He does not need to carry the smart card storing his private
information. While the smart card plays an important role in storing sensitive
information, it is impractical in many real environments due to inconvenience,
for example, a user needs an external interface device to communicate with a
smart card. Focused on this point, strong password authentication protocols were
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presented by Perlman et al.[16], Ford et al.[6], Jablon[9], etc. Some of them used
multiple servers to implement a roaming protocol that uses a weak secret key
to securely retrieve and reconstruct a strong private key that has been divided
into pieces distributed among multiple servers. We note that as one of goals, a
protocol has to allow a user to get his private key from the servers, even if some
of the servers are compromised.

In this paper we present a threshold password-based authentication protocol
for a roaming user. We use a (k,n)-threshold scheme in which only k honest
servers or more are engaged to reconstruct a secret key. Our scheme is based
on bilinear pairings that could be built from Weil pairing or Tate pairing over
Gap Diffie-Hellman(GDH) group, which Computational Diffie-Hellman(CDH)
problem is hard but Decision Diffie-Hellman(DDH) problem is easy.

2 Preliminaries

2.1 Previous Works

Perlman and Kaufman [16] presented protocols that we can securely retrieve a
private key and use this to download the rest of our security context. Ford and
Kaliski [6] proposed methods that use multiple servers to prevent attacking by
introducing password hardening protocol by which servers interact with the user
to harden the user’s password into a strong secret without revealing either the
user’s password or the hardened result. A password-only multi-server roaming
protocol is presented by Jablon [9]. In his protocol, the user can authenticate
servers and retrieve his private key for temporary use on a client machine using
just an easily memorable password. [6] and [9] make use of the multiple servers
to gain the goal of the protocol. When some of the servers are compromised, the
user can not obtain valid secret key no matter what the user has a method to
verify the key. In our proposed scheme, we deal with this problem.

Let’s briefly review here the protocol proposed in [9]. In this protocol the au-
thor introduced forgiveness protocol by which user’s honest mistakes are forgiven
by sending evidence of recent prior invalid access attempts after each successful
authentication. But we do not consider here this forgiveness.
Parameters. The protocol operates in a subgroup of order q in Z∗p,where p, q

and r are odd primes, p = 2rq + 1, 2k−1 < p < 2k, r 6= q, and 22j−1 < q < 22j .
Enrollment. The user, Alice, selects a password π, computes gπ = h(π)2r, and
creates a private key U . For each i ∈ [1, n], she computes a secret key share
Si = gπ

yi using randomly chosen yi ∈R [1, q− 1]. She then generates her master
j-bit symmetric key with Km = h(S1 ‖ · · · ‖ Sn) mod 2j , her encrypted private
key as UK =Km {U}, and her key verifier proofPKm = h(Km ‖ g).

1. Client: send {IDA, yi, UK , proofPKm} to each server Li for all i ∈ [1, n].
2. Servers: store them in a list Ci maintained on each server.

Authenticated Retrieval. To retrieve her master key at a later time, the client
and servers perform the protocol as below:



1. Client: select a random number x ∈ [1, q − 1], computes X = gπ
x mod p,

and then send {IDA, X} to Servers.
2. Servers: retrieve {IDA, yi, UK , proofPKm

} from Ci, compute Yi = Xyi , and
then reply {Yi, UK , proofPKm} to Client.

3. Client: compute Si = Y
1/x
i mod p for each i ∈ [1, n], and then generate

K ′ = h(S1 ‖ S2 ‖ · · · ‖ Sn). If proofPKm
6= h(K ′ ‖ g) abort, otherwise

compute U =1/K′ {UK}.

2.2 Threshold Cryptosystem

The concept of a threshold scheme, called secret sharing scheme was introduced
in [17] and since then many researchers have investigated such schemes.

A (k,n)-threshold secret sharing scheme is a protocol among n players in which
the dealer distributes partial information (share) about a secret to n participant
such that: a) Any group of fewer k participants can not obtain any information
about the secret. b) Any group of at least k participants can compute the secret
in polynomial time.

We use the verifiable secret sharing (VSS) scheme by Pedersen [20], denoted
as Pedersen-VSS. The next lemma summarizes some properties of Pedersen-VSS,
which are used in the analysis of our protocol.

Lemma 1. ([20]) Pedersen-VSS satisfies the following properties in the presence
of an adversary that corrupts at most k-1 parties and which cannot compute
logg h:

1. If the dealer is not disqualified during the protocol then all honest players hold
shares that interpolate to a unique polynomial of degree k-1. In particular,
any k of these shares suffice to efficiently reconstruct (via interpolation) the
secret s.

2. The protocol produces information (the public values Ei and private value
si) that can be used at reconstruction time to test for the correctness of
each share; thus, reconstruction is possible, even in the presence of malicious
players, from any subset of shares containing at least k correct shares.

3. The view of the adversary is independent of the value of the secret s, and
therefore the secrecy of s is unconditional.

In the next section, we describe our proposed password-based authentication
scheme making use of the (k,n)-threshold scheme in which a user distributes
secrets to multiple servers, assuming n ≥ 2k − 1 [20, 10].

2.3 Bilinear Pairings

Let us consider an additive group G1 and a multiplicative group G2 of the same
order q. Assume that the discrete logarithm problem is hard in both groups. Let
P be a generator of G1, and ê : G1 ×G1 → G2 a bilinear map satisfying the
following properties:



1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and all a, b ∈ Z.
2. Non-degeneracy: if ê(P, Q) = 1 for all Q ∈ G1, then P = O.
3. Computability: there exists an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

With such groups G1 and G2, we can define hard cryptographic problems like
Computational Diffie-Hellman (CDH) problem, Decision Diffie-Hellman (DDH)
problem, and Gap Diffie-Hellman(GDH) problem. We skip detailed definition of
these problems. To construct the bilinear pairing, we can use the Weil pairing
and Tate pairing. G1 is a cyclic subgroup of the additive group of points of a
supersingular elliptic curve E(Fp) over a finite field while G2 is a cyclic subgroup
of the multiplicative group associated to a finite extension of Fp.

3 Our Proposed Scheme

3.1 Model

Our model for multi-server roaming protocol is similar to that of [9], but with
some different features. First, our scheme employs the concept of threshold
scheme, where the user plays the role of a dealer to distribute secret shares
to n servers. To do this, we make use of the Pedersen-VSS protocol [20] in a
different way that only the user who knows an extra information, password, can
obtain the secret value derived from the password in collaboration with threshold
servers. While the protocol in [9] uses a n-out-of-n solution, i.e., the password
information is shared among n servers and they all must cooperate to authen-
ticate the user, the protocol in our model uses k-out-of-n solution. In addition,
even if an adversary compromises k or more servers, she cannot reconstruct the
secret value, without knowing user’s password. Second, our scheme is based on
bilinear pairings that can be built from Weil pairing or Tate pairing over GDH
group, which CDH problem is hard but DDH problem is easy. On the other hand,
although we don’t consider forgiveness protocol introduced in [9] by which user’s
honest mistakes are forgiven by sending evidence of recent prior invalid access
attempts after each successful authentication, this forgiveness can be adapted in
our system. Figure 1 depicts the concept of our model.
There are two phases: (1) Enrollment phase — The user, U enrolls his credentials
in the servers at his own client terminal, C which may hold user’s private infor-
mation. (2) Retrieval phase — The user may move to other place where he is
just able to use different client terminal, C ′ which does not hold any user-specific
information. The protocol, however, allows the user to download a private key
from remote servers with knowledge of only his identity and password.

Enrollment [T PS Protocol]. After constructing (k,n)-threshold system as similar
as in Pedersen-VSS, the client terminal (For simplicity, we say “client ”.) creates
n shares using the Pedersen-VSS scheme. k shares will contribute to reconstruct
the master symmetric key Km which is derived from a user’s password π. Then,
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Fig. 1. The concept of our model

the client have user’s private key SK encrypted with the symmetric key Km.
Finally, he creates a proof value V that links the password to his master key.

The client sends secretly share Yi, the encrypted private key UK , and the
proof value V to each server.

As in [9], the enrollment protocol flow has to be performed through a secure
channel that authenticates the identity of the user to each ith server Li.

Authenticated Retrieval [T PR Protocol]. When at any available client terminal,
the user wants to download his private key stored in the server, the client first
performs the threshold protocol with at least k servers. Note here that no client
terminal has a user’s information created at enrollment time.

The client randomly chooses at least k servers and sends them a randomly
blinded form of the password to each server. On receiving the request, each
server in turn responds with a blinded reply consisting of the blinded password.
At least one of the servers also sends the encrypted private key UK and its proof
value V to the client.

The client reconstructs user’s master key Km using the shares and user’s
password, and then verifies whether the master key is correct using the proof
value V and the master key Km. Finally, if the master key is correct, the user
gets his private key SK by decrypting UK with the master key.

3.2 Definitions

Communication Model. We assume that our computation model is composed of
a set of n players {L1, L2, . . . , Ln}. They are connected by a complete network of
secure point-to-point channels. The players have access to a dedicated broadcast



channel in which when a player sends a broadcast message all other players can
receive the message and know exactly from whom the message sent.

The Adversary. We assume that there exists an adversary, A, who can corrupt
up to k − 1 of n servers in the network, where n ≥ (2k − 1). We consider a
malicious adversary that may cause corrupted players to divert from the specified
protocol in any way. We assume that the computational power of the adversary
is adequately modeled by a probabilistic polynomial time Turing machine. Our
adversary is static, i.e., chooses the corrupted players at the beginning of the
protocol.

Now, we state some definitions similar in [11, 12], for the analysis of our
protocol.

In the following we assume that there are a dealer C and n players {L1, L2, . . . ,
Ln}. We say that C broadcasts a message m, when she puts m on the broad-
cast channel for everybody to hear it. In particular A can hear the message too.
We say that C distributes a message if she puts m on the private channels
connecting her to all the other players. Notice that A can see m only if somebody
has been corrupted.

Let P be a pair of protocols where the second is always executed after the
first one, P=(Share-Verify, Recover) for the players {L1, L2, . . . , Ln} and a
dealer C.

Definition 1. (View) The adversary view, ViewPNetwork,A(·) during protocol P
is the probability distribution over the set of computational histories (traffic and
coin tosses) of the bad players.

Sometimes we accompany some distributed protocol P we propose by a de-
scription of a simulator Sim which is needed to analyze the security of this
protocol. Sim is an algorithm that plays the role of the honest players. A inter-
acts with Sim as if she was interacting with the network. Sim tries to create a
view for A that is indistinguishable form the real one. That is, the process of
simulation is a computation of two interactive algorithms, Sim and A, where the
simulator controls the uncorrupted players, and A controls the corrupted play-
ers. Therefore a description of a simulation process is similar to a description of
the protocol itself [13].

Definition 2. The protocol P is called k-secure (or secure with threshold k) if
in the presence of an attacker that corrupts at most k-1 parties the following
requirements for correctness and secrecy are satisfied:

Correctness:
1. All subsets of k shares provided by honest players define the same unique

secret value.
2. Secret value is uniformly distributed.

Secrecy: (Simulatability) For every (probabilistic polynomial-time) adversary
A, there exists a (probabilistic polynomial-time) simulator Sim, such that on
input an element Y, produces an output distribution which is polynomially



indistinguishable from A’s view of a run of P that ends with Y as its out-
put, and where A corrupts up to k-1 parties. That is, the adversary view
ViewPNetwork,A(·) is identical with ViewPSim,A(·) which is the adversary view
of the simulated execution of the protocol.

A simulator of each subprotocol exhibits the secrecy of this subprotocol,
which states that the adversary learns nothing from the protocol beyond the
public inputs and outputs of this protocol, or in other words, that the adversary
learns as much by participating in the threshold computation as he would learn
from observing this operation as a block-box.

We now come up with the following definition of the secure threshold password-
authenticated key retrieval protocol (TPKR for short).

Definition 3. In our TPKR = (T PS, T PR), Let two kinds of (static) ad-
versaries exist as follows:

1. Strong Adversary: the adversary is able to corrupt and to control k or more
servers if he desires.

2. Weak Adversary: Not strong adversary, i.e., the adversary is just able to
corrupt at most k-1 servers.

Definition 4. (Secure TPKR) Let TPKR be the (k,n)-threshold password-authe
nticated key retrieval protocol, where 2k-1≤n. TPKR is a strongly secure protocol
if:

1. The protocol is k-secure satisfying Definition 2 in the presence of the weak
adversary in Definition 3.

2. No adversary, even strong one, without knowing user’s password is able to
reconstruct the master symmetric key Km, and is thus able to obtain the
private key SK.

3.3 Detailed Protocol

We let ` be the security parameter given to the setup algorithm and let G be
some GDH parameter generator.

System Setup Given a security parameter `, the algorithm G works as follows:

1. Run G on input ` to generate a prime q ≥ 2`, two cyclic groups G1 and G2

of the same order q and a bilinear map ê : G1 ×G1 → G2.
2. Choose two arbitrary generators P and P ′ ∈ G1, where P ′ = αP for some

α ∈ Zq and the computing α given P and P ′ is infeasible.
3. Choose cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}κ,

and H3 : {0, 1}κ × G1 → Z∗q , for some κ. The security analysis will view
H1,H2, and H3 as random oracles.

4. The system parameters are params = {G1,G2, ê, H1,H2,H3, P, P ′}. And
then publish them.



Enrollment Protocol T PS The enrollment protocol makes use of Pedersen-
VSS protocol, but we introduce elliptic curve cryptosystems for bilinear parings.

Denote n servers involving in the protocol as {L1, L2, . . . , Ln} and the client
playing the role of a dealer as C. Let ID and SK be the user’s identity and the
private key, respectively. The user having ID picks his password π. We assume
that π can be mapped into Zq. The user then performs the following protocol
at the client terminal as follows:

1. The client C, as a dealer, distributes user’s credentials.
(a) Select randomly y and z ∈ Z∗q .
(b) Choose two random polynomials f(x) and g(x) over Zq of degree k − 1

such that f(0) = a0 = y and g(0) = b0 = z. Let

f(x) = a0 + a1x + · · ·+ ak−1x
k−1 and

g(x) = b0 + b1x + · · ·+ bk−1x
k−1.

(c) Compute and broadcast Ei = E(ai, bi) = aiP + biP
′ for i = 0, . . . , k− 1.

(d) Compute K = ê(yRID, QID), then create the master symmetric key
Km = H2(K), where RID = H1(π) and QID = H1(ID). Then create
the encrypted private key UK = EKm(SK) and the key verifier V =
H3(Km, P ), and let Yi = f(i)·QID and Zi = g(i)·QID for i = 1, 2, . . . , n.

(e) Send {ID, Yi, Zi, UK , V } secretly to each player Li for all i ∈ [1, n].
2. After receiving all the information from C, Li does as follows.

(a) Verifies that

ê(Yi, P ) · ê(Zi, P
′) ?= ê

(
QID,

k−1∑

j=0

ij · Ej

)
. (1)

(b) If Eq.(1) is verified to be false, response a complaint against C.
Otherwise accept and store {ID, Yi, UK , V } in a storage maintained on
each Li.

3. C discards all information, and completes the enrollment protocol.

For the sake of convenience, we assume that the client has received no com-
plaint in Step 2.

Authenticated Retrieval Protocol T PR For authenticated retrieval, the
client and k servers perform the actions as follows: Denote k servers by B =
{Li | 1 ≤ i ≤ k}.

1. C sends k servers a request message.
(a) Select a random number uniformly distributed x ∈ Z∗q , compute X =

xRID.
(b) Send X and ID to each server Li for i ∈ B.

2. On receiving the request, each server Li responds as follows:



(a) Retrieve {ID, Yi, UK , V } from the storage maintained securely on each
Li.

(b) Compute Ri = ê(X, Yi), and then reply {Ri, UK , V } to the client.
3. Finally, the client reconstructs user’s private key by performing the following:

(a) Compute li =
∏

j∈B,j 6=i
j

j−i for each ith server.

(b) Compute R′i = (Ri)lix
−1

and K ′ =
∏

i∈B R′i.
(c) Generate K ′

m = H2(K ′).
(d) If V 6= H3(K ′

m, P ), abort.
(e) To obtain the private key, decrypt UK with the master key K ′

m.

Completing the protocol successfully, the client reconstructs the user’s private
key SK. Figure 2 depicts the retrieval protocol.

Client Servers(B)

x ∈ Z∗q
X = xRID

ID,X
-

Retrieve {ID, Yi, UK , V }
Ri = ê(X, Yi)

Ri, UK , V
¾

li =
∏

j∈B,j 6=i
j

j−i for each ith server

K ′ =
∏

i∈B(Ri)lix
−1

K ′
m = H2(K ′)

If V 6= H3(K ′
m, P ), abort.

SK = DK′
m

(UK)

Fig. 2. Our Threshold Key Retrieval Protocol

4 Security Analysis

In this section, we discuss with the security aspects of our proposed scheme
TPKR and give the complete security proof. As a result, the security for our
protocol arrives at the security for secret value K, assuming that the adapted
symmetric cryptosystem is secure and thus nobody can obtain the private key
SK without knowing K. Note that UK = EKm(SK), where Km = H2(K).

Lemma 2. (Correctness) The protocol TPKR=(T PS, T PR) from Section 3.3
satisfies the correctness of Definition 2 with threshold k, for any k ≤ (n + 1)/2.



Proof. First note that all the honest players indeed hold the verification equation
Eq.(1) as follows:

ê(Yi, P ) · ê(Zi, P
′) = ê

(
QID,

k−1∑

j=0

ij · Ej

)
.

Since

ê(Yi, P ) · ê(Zi, P
′) = ê(f(i)QID, P ) · ê(g(i)QID, P ′) = ê(QID, f(i)P + g(i)P ′),

where

f(i)P + g(i)P ′ =
k−1∑

j=0

ij(ajP + bjP
′) =

k−1∑

j=0

ijEj .

1. From Lemma 1.1, we know that all honest players hold shares (Yi) which
contribute to reconstruct unique secret by combining with client’s request mes-
sage as in step 2 of T PR protocol. For any set B of k shares and extra value
(X) from client’s request message, the unique secret is computed as follows:

K ′ =
∏

i∈B
ê(X,Yi)lix

−1
=

∏

i∈B
ê(xRID, f(i)QID)lix

−1
=

∏

i∈B
ê(f(i)liRID, QID)

=
∏

i∈B
ê(f(i)

∏

j∈B,j 6=i

j

j − i
RID, QID) = ê(

∑

i∈B
f(i)

∏

j∈B,j 6=i

j

j − i
RID, QID)

= ê(yRID, QID),

where li is an appropriate Lagrange interpolation coefficient for the set B. Since
the above holds for any set of k correct shares then K ′ is uniquely defined, where
the same extra value (X) which as said is derived from the user’s password has
to be given to the protocol T PS and T PR.

2. Let’s consider the secret value K. We can let K be gλy for some λ where g is
a generator of group G2. Since y is chosen randomly from Z∗q as in [20], therefore
K = gλy is also a random element in the group G2. On the other hand, from
Lemma 1.3, the view and thus actions of the adversary are independent of the
secret y.

As a result, we can state that TPKR can be resistant to corruption of even
k− 1 of n ≥ 2k− 1 servers. A user chooses randomly a secret value y uniformly
distributed in Z∗q during the execution of T PS. Even there exists an adversary
who can corrupt at most k−1 servers among n ≥ 2k−1, any subset of k servers
constructs the secret value K uniformly distributed in G2.

Lemma 3. (Secrecy) Protocol TPKR from Section 3.3 satisfies the secrecy of
Definition 2.



Proof. We can prove in a similar way which is used to prove Lemma 3 in [13].
We can state that, for any input secret y and y′, if the dealer C is uncorrupted
then there is no difference between the adversarial view of an execution of TPKR
in which C shares y′, from a view of TPKR in which C shares y.

There exists Sim such that for every n/2-threshold static secure-channels
adversary A with history hA, for any given system parameter params. Let E
stand for an instance (P, P ′) of Pedersen commitment [20]. Let f(x), g(x) be any
k−1 degree polynomials such that f(0) = y. Consider a run of TPKR in which C
uses polynomials f(x), g(x) and the random input of A is rA. Note that once we
fix f(x), g(x), rA then everything else in the run of this protocol is determined.
Denote the outputs of such run as T PKRData

A ((hA, rA), E; f(x), g(x)). We
denote the set of corrupted players as PB and the set of uncorrupted players as
PG .

Note that any k − 1 degree polynomials f ′(x), g′(x) such that f ′(i) = f(i)
for Li ∈ PB and f(x) + αg(x) = f ′(x) + αg′(x) where P ′ = αP , the adversary’s
output in T PKRData

A ((hA, rA), E; f ′(x), g′(x)) is the same as in T PKRData
A

((hA, rA), E; f(x), g(x)).
If we fix y, y′, rA, and range the polynomials f(x), g(x) among all k − 1

degree polynomials such that f(0) = y, then we see that the distribution of the
adversary view in the following two cases are equal, for every y, y′, and rA:

1. TPKR on f ′(x), g′(x), and rA followed by protocol on the resulting T PKRData
A ,

where f ′(x), g′(x) are random k−1 degree polynomials such that (0) f ′(0) =
y′; (1) f ′(i) = f(i) on Li ∈ PB; (2) f ′(x) + αg′(x) = f(x) + αg(x)
where f(x), g(x) are random k − 1 degree polynomials such that f(0) = y.

2. TPKR on f(x), g(x), and rA with outputs denoted T PKRData
A [y], followed by

protocol on inputs T PKRData
A [y′] output by replacement procedure TTPKR

(T PKRData
A [y], y′, α) where f(x), g(x) are random k− 1 degree polynomials

such that f(0) = y.
TTPKR(T PKRData

A [y], y′, α) mentioned above takes as inputs a given secret-
sharing T PKRData

A [y], target value y′ and α s.t. P ′ = αP , and outputs its
replacement T PKRData

A [y′] as in [13]. Note that the data which is visible
to A, i.e., the public data and the private data of the players controlled by
the A, must remain the same in T PKRData

A [y] and T PKRData
A [y′], so this

replacement is always only a modification of the private data of the players
controlled by the simulator.

From the above observations, (1) since f(x) is a random polynomial such that
f(0) = y, then f ′(x) is a random polynomial such that f(0) = y′; and (2) there
is a one-to-one mapping between a choice of g(x) and a choice of g′(x), and thus
since g(x) is a random polynomial then so g′(x).

From Lemmas 2 and 3, we can state the following theorem:

Theorem 1. Assume that n ≥ 2k − 1. Then the protocol TPKR is k-secure
threshold-authenticated roaming protocol according to Definition 2 with fault-
tolerance k.



The following lemma shows the security of the protocol T PR against a strong
adversary who corrupts k or more servers if he desires.

Lemma 4. Under GDH assumption, the protocol T PR is secure against a strong
adversary defined by Definition 3.

Proof. Let a strong adversary A be able to corrupt k or more servers and thus to
obtain at least k shares. In this case, we need to show that A can not reconstruct
the secret value K ′ without knowing the user’s password.

In order to break the protocol, A tries to compute K ′′ such that

K ′′ =
∏

i∈S

ê(R′, Yi)li , (2)

with knowledge of system parameter params, any set S of t secret shares
Yi for i = 1, 2, . . . , t (t ≥ k) and client’s request messages X, where li is an
appropriate Lagrange interpolation coefficient for the set S.

We assume A has three options to compute K ′′: (1) Solve DLP, i.e. find
an integer n such that Q = nP , (2) Solve CDHP in such a way that given
(P, αP, βP ) ∈ G1 compute αβP , and (3) Guess correct password, e.g., by mount-
ing password guessing attack.

1. In order to compute Eq.(2), A first unblinds X to obtain R′, i.e. find an
integer x (or x′ = xβ) such that R′ = xRID (or R′ = x′P ). Thus no adversary
can compute R′, under the assumption DLP is hard.

2. Let QID = αP , RID = βP . Even given a triple (P, αP, yβP ), A can not
compute αβyP , such that K ′′ = ê(yRID, QID) = ê(P, P )αβy = gαβy where g is
a generator of G2, assuming that G1 is a GDH group.

On the other hand, given {Yi = yiQID | i = 1, 2, . . . , t}, A can compute the
following at the best:

Y ′′ =
∏

i∈S

ê(yiQID, P )li = ê(yQID, P ) = ê(P, P )αy = gαy.

3. Let π′ be a password guess by A. Thus R′ = H1(π′). Now, A computes the
following:

K ′′ =
∏

i∈S

ê(R′, Yi)li =
∏

i∈S

ê(R′, f(i)QID)li = ê(yR′, QID),

However, A can not verify whether his guess is correct or not. More over, by
Lemma 3 it is impossible to distinguish K ′′ from K ′.

Theorem 2. Assume n ≥ 2k − 1. Then the protocol TPKR is strongly secure
according to Definition 4, under GDH assumption.

Proof. The proof of the theorem comes immediately from Theorem 1 and Lemma
4.



5 Comparison

With mainly compared to [6] and [9], our scheme is capable of resisting that
fewer than threshold servers are compromised. When only k honest servers are
involved in the protocol, the user can retrieve his private key with knowledge of
his own password. Besides, even attacker has succeeded in compromising k or
more servers but without knowing the user’s password, she still cannot obtain
any information about the user’s credential.

Table 1 depicts computation load of TPKR compared with [9]. We denote E
and M by computation load for exponentiation and multiplication, respectively.
Let n be the number of servers and k be threshold value.

Table 1. Computation in the Retrieval on the Client Side

Jab01 [9] TPKR

Main computation Si = Rx−1

i R′i = Rlix−1

i

parts K′ = h(S1 ‖ · · · ‖ Sn) K′ = h(
∏

i∈B R′i)
Computation load nE k(E+M)

From Table 1, we see that our scheme TPKR is more efficient one than Jab01
with respect to the computation during the retrieval, since the inequality nE
≥ kE+kM holds, where n ≥ 2k − 1, i.e., (k − 1)E ≥ kM if k ≥ 2. However
with respect to the server side, the computation load of our protocol may be less
efficient due to pairing operation which costs several times expensive than the
exponentiation [21].

6 Conclusions

Based on pairings, we firstly suggest a new threshold password-only roaming
protocol which allows a roaming user to download a private key from remote
servers, without revealing the password to off-line guessing. No client terminal
has his information created at enrollment time.

We note that, as a goal of a multi-server roaming system, a protocol has to
allow a user to get his private key from the servers, even if some of the servers are
compromised. In this paper, we use (k,n)-threshold scheme in which only k honest
servers or more are engaged to reconstruct a secret key based on bilinear pairings
that could be built from Weil pairing or Tate pairing. The protocol is useful for
authenticating roaming users and even non-roaming users, and retrieving private
keys for use in other applications. A design of more efficient schemes based on
parings is left as one of further works.
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