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Abstract. ID-based public key systems allow the user to use his/her
identity as the public key, which can simplify key management proce-
dure compared with CA-based public key systems. However, there is an
inherent disadvantage in such systems: the problem of private key escrow,
i.e., the “trusted” Private Key Generator (PKG) can easily imperson-
ate any user at any time without being detected. Although the problem
of escrowing the private key may be reduced by distributing the trust
onto multiple centers, it will decrease the efficiency of the systems. Chen
et al. first proposed a novel ID-based signature scheme without trusted
PKG from bilinear pairings [10], i.e., there is only one PKG who is not
assumed to be honest in their scheme. However, the signature scheme
cannot be extended to a threshold one. In this paper we propose another
ID-based signature scheme without trusted PKG from bilinear pairings.
Moreover, we propose an ID-based threshold signature scheme without
trusted PKG, which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity
rather than the master key of PKG is shared.
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1 Introduction

The idea of threshold cryptography is to distribute the secret information (i.e.,
a secret key) and computation (i.e., decryption or signature generation) among
multi parties in order to prevent a single point of failure or abuse. For example,
let Alice be the president of a committee, she shared her power of signing (or de-
crypting) among a number of servers in such a way that only more than a certain
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number of secret shares can be used to sign a message or decrypt a ciphertext on
behalf of her. There are plenty of research on threshold cryptographic schemes
under CA-based public key setting [6, 13, 21, 24].

In 1984, Shamir [22] introduced the concept of ID-based systems, which sim-
plifies key management procedure of CA-based PKI. The idea of ID-based sys-
tems is that the identity information of the user I acts as his/her public key
P , and a trusted third party, called Private Key Generator (PKG), calculates
the private key for the user. ID-based systems can be a good alternative for
CA-based systems from the viewpoint of efficiency and convenience.

The bilinear pairings, namely the Weil pairing and the Tate pairing of al-
gebraic curves, are important tools for research on algebraic geometry. The
use of them in cryptography goes back to the results of Menezes-Okamoto-
Vanstone [19] and Frey-Rück [11]. However, their works were to attack ellip-
tic curve or hyperelliptic curve cryptosystems (i.e., using pairings to transform
the ECDLP or HCDLP into a discrete logarithm problem in the multiplicative
group of a finite field). During the last couple of years, the bilinear pairings
have initiated some completely new fields in cryptography, making it possible
to realize cryptographic primitives that were previously unknown or impracti-
cal [4, 5]. More precisely, they are important tools for construction of ID-based
cryptographic schemes [3, 4, 9, 17, 20, 23, 25].

However, there are some drawbacks in ID-based systems [9, 14, 17]. The most
criticism against ID-based systems is that PKG knows the private key of all users,
so he is able to impersonate any user to sign a document or decrypt an encrypted
message. It implies that the PKG must be trusted unconditionally otherwise the
systems will soon be collapsed. However, it would be difficult to assume the
existence of a trusted party in an ad hoc network, where the communication
parties are changing frequently.

Boneh and Franklin [4] proposed that the threat from escrowing the private
key could be reduced by using “distributed PKGs”. On the other hand, they
briefly mentioned that each PKG of the “distributed PKGs” can act as a de-
cryption (similarly, a signature generation) server. However, it is a disadvantage
in Boneh and Franklin’s scheme for the PKG to be involved in the particular
applications, which is opposed to the Shamir’s original proposal that the service
of the PKG is limited to issue private keys. The original purpose of “distributed
PKGs” is to prevent a single dishonest PKG possessing the users’ private key,
rather than to distribute a user’s private key. Libert and Quisquater [18] pro-
posed a somewhat different method where one PKG plays a role as a dealer.
However, the PKGs in such schemes are still involved in particular applications.

Until very recently, Baek and Zheng [1] suggested a new approach for ID-
based threshold decryption in which the private key associated with an identity
rather than the master key of PKG is shared. Moreover, they [2] first proposed
an ID-based threshold signature scheme without distributed PKGs. However,
it still suffers the problem of private key escrow as the traditional ID-based
systems. Though the scheme [2] can incorporate the distributed PKGs techniques
to solve the key escrow problem, we argue that using distributed PKGs will



increase the communication and computation cost of the systems. To the best
of our knowledge, there seems no ID-based threshold signature scheme without
distributed PKGs which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity rather
than the master key of PKG is shared.

Recently, a novel ID-based signature without the trusted PKG from bilin-
ear pairings [10] is proposed. There is only one PKG who is not assumed to
be trusted in the systems, which combines the advantages of both CA-based
systems (no key escrow) and ID-based systems (no certificate) while removing
their disadvantages. However, it seems difficult to extend the signature scheme
to a threshold one. In this paper we propose another ID-based signature scheme
without the trusted PKG from bilinear pairings. Moreover, we extend it to an
ID-based threshold signature scheme without distributed PKGs which overcomes
the problem of key escrow. Meanwhile, we adopt the approach that the private
key associated with an identity rather than the master key of PKG is shared in
the proposed scheme.

The rest of the paper is organized as follows: Some preliminaries are given in
Section 2. Our new ID-based signature scheme from bilinear pairings is given in
Section 3. The proposed ID-based threshold signature scheme is given in Section
4 and the analysis of our scheme is given in Section 5. Finally, concluding remarks
will be made in Section 6.

2 Preliminaries

In this Section, we will briefly describe the basic definition and properties of bi-
linear pairings and gap Diffie-Hellman group. We also introduce ID-based public
key setting and a knowledge proof for the equality of two discrete logarithm from
bilinear pairings.

2.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. Let a and b be elements
of Z∗

q . We assume that the discrete logarithm problem (DLP) in both G1 and
G2 is hard. A bilinear pairing is a map e : G1 × G1 → G2 with the following
properties:

1. Bilinear: e(aP, bQ) = e(P, Q)ab;
2. Non-degenerate: There exists P, Q ∈ G1 such that e(P, Q) 6= 1;
3. Computable: For all P, Q ∈ G1, there is an efficient algorithm to compute

e(P, Q).

2.2 Gap Diffie-Hellman Group

Let G1 be a cyclic additive group generated by P with the prime order q. Assume
that the inversion and multiplication in G1 can be computed efficiently. We
introduce the following problems in G1.



1. Discrete Logarithm Problem (DLP): Given two elements P and Q, to find
an integer n ∈ Z∗

q , such that Q = nP whenever such an integer exists.
2. Computation Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈

Z∗
q , to compute abP.

3. Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗

q , to decide whether c ≡ ab mod q.

We call G1 a gap Diffie-Hellman group if DDHP can be solved in polyno-
mial time but there is no polynomial time algorithm to solve CDHP with non-
negligible probability. Such group can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings. For more details, see [4, 7, 12, 17].

In the following we always define G1 be a gap Diffie-Hellman group of prime
order q, G2 be a cyclic multiplicative group of the same order q and a bilinear
pairing e : G1 × G1 → G2.

2.3 ID-based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such
as name, address and email etc., rather than an arbitrary string to be used his
public key. The private key of the user is calculated by PKG and sent to the
user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as
follows:

– Setup: PKG chooses a random number s ∈ Z∗
q and set Ppub = sP. Define

a cryptographic hash function H2 : {0, 1}∗ → G1. The center publishes
system parameters params = {G1, G2, e, q, P, Ppub, H2}, and keep s as the
master-key, which is known only himself.

– Extract: A user submits his/her identity information ID to PKG. PKG
computes the user’s public key as QID = H2(ID), and returns SID = sQID

to the user as his/her private key.

2.4 ID-based Knowledge Proof for the Equality of Two Discrete

Logarithm from Bilinear Pairings

A prover with possession a secret number β ∈ Zq wants to show that logg u =

logh v while without exposing β, where u = gβ, v = hβ. Chaum and Pedersen [8]
first proposed an interactive protocol to solve this problem. Motivated by this
idea, Baek and Zheng [1, 2] construct a new ID-based knowledge proof for the
equality of two discrete logarithm from bilinear pairings.

Define g = e(P, QID), u = e(Ppub, QID), h = e(L, QID) and v = e(L, SID),
where P and L are independent points of G1. The following protocol presents a
knowledge proof of that logg u = logh v. An interesting property of this proof is
that even the prover does not know the discrete logarithm logg u = logh v (just
be convinced that it equals to the master-key s of the PKG), which is different



from the previous protocols. With the notation of [5], < g, h, u, v > is called a
Diffie-Hellman tuple.

– The prover randomly chooses an element Q in G1 and computes a = e(P, Q),
b = e(L, Q). The prover sends (a, b) to the verifier.

– The verifier randomly chooses an integer c ∈ Zq and sends c to the prover.
– The prover computes S = Q + cSID and sends S to the verifier.
– The verifier checks whether e(P, S) = auc and e(L, S) = bvc. If both the

equations hold, returns “accept”; else, returns “reject”.

As claimed in [1, 2], the above protocol can be easily converted a non-interactive
knowledge proof:

– The prover randomly chooses an element Q in G1 and computes a = e(P, Q),
b = e(L, Q).

– Let c = H(a, b, h, v), the prover computes S = Q + cSID and sends (a, b, S)
to the verifier.

– The verifier computes c = H(a, b, g, h) and checks whether e(P, S) = auc

and e(L, S) = bvc. If both the equations hold, returns “accept”; else, returns
“reject”.1

3 New ID-based Signature Scheme without Trusted PKG

In this section, we first present our new ID-based key setting from bilinear pair-
ings, and then propose a concrete signature scheme without the trusted PKG to
solve the problem of key escrow, i.e., we do not use the distributed PKGs in our
system and the single PKG is assumed no longer to be a trusted party.

Define three cryptographic hash functions H1 : {0, 1}∗ × G1 → G1, H2 :
{0, 1}∗ → G1 and H3 : G2

4 → Zq.

3.1 New ID-based Public Key Setting from Bilinear Pairings

[Setup]

PKG chooses a random s ∈ Z∗
q and sets Ppub = sP . The public parameters

of the system are params = {G1, G2, e, q, P, Ppub, H1, H2, H3}. PKG keeps s se-
cretly as the master-key.

[Extract]

A user submits his (or her) identity information ID and authenticates himself
(or herself) to PKG. The user then randomly chooses an integer r ∈ Z∗

q as his

1 The prover also can send (c, S) to the verifier. The verifier computes a′ = e(P, S)/uc,
b′ = e(L, S)/vc and c′ = H(a′, b′, h, v). If c = c′, the verifier accepts the proof; else
reject the proof. Therefore, the length of proof is decreased.



long-term private key and sends rP to PKG. PKG computes SID = sQID =
sH1(ID||t, rP ) and sends it to the user via a secure channel, where t is the life
span of r. The user’s private key pair are SID and r and the public key is ID.

The user should update his key pair after period of t. For the sake of sim-
plicity, we do not discuss this problem here.

3.2 New ID-based Signature Scheme from Bilinear Pairings

Chen et al. [10] have proposed an ID-based signature scheme without the trusted
PKG based on Cha and Cheon’s signature scheme [7]. But it is unsuitable for
designing threshold signature scheme. Here we propose a new ID-based signature
scheme without the trusted PKG and then extend it to a threshold scheme.

[Signing]

Suppose that the message to be signed is m and the signer’s identity is ID.

– The signer computes T = rH2(m).
– The signer computes v = e(H2(m), SID).
– Let g = e(P, QID), u = e(Ppub, QID) and h = e(H2(m), QID), the signer

proves that (g, h, u, v) is a Diffie-Hellman tuple by using a non-interactive
knowledge proof for the equality of two discrete logarithm. Let the proof
be (a = e(P, Q), b = e(H2(m), Q), S = Q + cSID), where Q is a randomly
chosen element in G1 and c = H3(a, b, h, v).

Then (T, v, rP ) and the corresponding proof (a, b, S) is the signature of the
message of m.

[Verification]

The verifier computes QID = H1(ID||t, rP ), h = e(H2(m), QID), u =
e(Ppub, QID), c = H1(a, b, h, v). He accepts the signature if the following equa-
tions hold:

e(T, P ) = e(H2(m), rP )

e(P, S) = auc, e(H2(m), S) = bvc

3.3 Security Analysis of Our Scheme

Theorem 1. The proposed ID-based signature scheme reaches Girault’s trusted

level 3.

Proof. Suppose PKG wants to impersonate an honest user whose identity infor-
mation is ID. He can do as follows:

– PKG randomly chooses r′ ∈ Z∗
q and computes SID′ = sH1(ID||t, r′P ).

– He then performs the above signing protocol for the message m.



– Output (T ′, v′, r′P, a′, b′, S′).

Because e(T ′, P ) = e(H2(m), r′P ), e(P, S′) = a′u′c, and e(H2(m), S′) =
b′v′c, where u′ = e(Ppub, Q

′
ID), c = H3(a

′, b′, e(H2(m), Q′
ID), v′), and Q′

ID =
H1(ID||t, r′P ), PKG successfully forged a “valid” signature of the target user
for the message m.

However, the user can provide a proof to convince that the signature is
forged by PKG, which is similar to CA-based systems.2 He first sends rP to
the arbiter, and then provides a “knowledge proof” that he knows SID =
sH1(ID||t, rP ) : the arbiter randomly chooses a secret integer a ∈ Zq and sends
aP to the user; the user then computes e(SID, aP ). If the equation e(SID, aP ) =
e(H1(ID||t, rP ), Ppub)

a holds, i.e., identity ID corresponds to rP and r′P for a
same period t, the arbiter deduces that PKG is dishonest because the master-key

s is only known to him.
Therefore, our scheme reaches Girault’s trusted lever 3 [16], i.e., the author-

ity does not know the private key of the users, and it can be proven that the
authority generates false witness if he does so. ut

Theorem 2. In the random oracle, our signature scheme is existentially un-

forgeable against adaptively chosen message and ID attacks under the assumption

of CDHP in G1 is intractable.

Proof. In our scheme, the partial signature T is the “real” signature of the user
for the message. The knowledge proof (a, b, S) and v can be used to convince
the verifier that rP correspondences to ID for the period t. We consider the
following two kinds of adversaries:

Case 1: Active Adversary

Since PKG is not a trusted party, we consider that an active adversary can
collude with PKG. For a randomly chosen target user whose identity is ID.
The adversary can know the target user’s long-term public key rP and partial
private key SID from PKG. So, it is trivial for the adversary to generate v and
the proof (a, b, S) for any message. If he can compute the corresponding V for a
message m, he can successfully forge a signature of the user for the message m.
We consider the following game:

Suppose the adversary can query to H2 adaptively at most k times. Suppose
the i-th input of query is mi and he gets the corresponding signature Ti, here
1 ≤ i ≤ k. Finally, he outputs a new pair (m, T ). We say that the adversary
wins the game if m is not queried and e(T, P ) = e(H2(m), rP ).

If there exists an algorithm A0 for an adaptively chosen message attack to
our scheme with a non-negligible probability, we can construct an algorithm A1

as follows:

2 In the CA-based systems, CA also can forge a user’s certificate and impersonate the
user to communicate with others. However, the user can accuse the dishonest CA
because there exist his two different “valid” certificates issued by the same CA.



– choose an integer u ∈ {1, 2, · · · , k}. Define Sign(H2(mi)) = Ti.
– For i = 1, 2, · · · , k, A1 responds to A0’s queries to H2 and Sign, while for

i = u, A1 replaces mu with m.
– A0 outputs (mout, Vout).
– If mout = m and the signature T is valid, A1 outputs (m, T ). Otherwise,

outputs Fail.

Note that u is randomly chosen, A0 knows nothing from the queries result.
Also, since H2 is a random oracle, the probability that the output of A0 is valid
without query of H2(m) is negligible. Let H2(m) = eP , we obtain T = reP from
P , rP and eP , i.e., we solved CDHP in G1.

Actually, V can be regarded as the short signature of the message m and
(P, rP, H2(m), T ) is a valid Diffie-Hellman tuple. We know that the probability
of the adversary can successfully forge a valid signature is negligible. For more
details, see reference [5].

Case 2: Passive Adversary

A passive adversary cannot collude with the PKG. In this case, for a tar-
get user whose identity is ID, the adversary cannot know the information of
SID = sH1(ID||t, rP )(i.e., a “certificate” in CBE scheme [15]) from PKG. In
the following we will prove that his success probability of forgery of a valid
signature is negligible, which is similar to Cha-Cheon’s proof [7].

As we mentioned above, an identity ID only corresponds to one unique rP

for a period of time t, so (ID, rP ) can be extracted at most once. Define qH1
is

the maximum number of queries to H1. If there exists an algorithm A0 for an
adaptively chosen message and ID attack to our scheme with a non-negligible
probability, we can construct an algorithm A1 as follows:

– choose an integer u ∈ {1, 2, · · · , qH1
}. Define (IDi, riP ) the i-th input of

query H2.
– A1 responds to A0’s queries to H1, H2, H3, Extract, and Signing, while

for i = u, A1 replaces IDu, ruP with ID, rP .
– A0 outputs (IDout, routP, m, T, v, a, b, S).
– If IDout = ID and the signature is valid, A1 outputs (ID, rP, m, T, v, a, b, S).

Otherwise, outputs Fail.

Note that u is randomly chosen, A0 knows nothing from the queries result.
Also, since H1, H2 and H3 are random oracles, the probability that the output
of A0 is valid without query of H1(ID||t, rP ) is negligible. So, A1 can be used
for an adaptively chosen message and given ID attack to our scheme with a non-
negligible probability. We then use A1 to construct an algorithm A2 to solve
CDHP in G1:

– Given P, sP, lP and let Ppub = sP . Choose integers xi ∈ Zq and let (IDi, riP )
the i-th input of query H . Define

H(IDi||t, riP ) =

{

lP, if IDi = ID

xiP, otherwise



– A2 responds to A1’s queries to H1, H2, H3, Extract, and Signing.
– If A1 outputs a valid message-signature pair (ID, rP, m, T, v, a, b, S), A2 then

replays with the same random tape but a different choice of H3, for example
H

′

3. A2 outputs two valid message-signature pairs (ID, rP, m, T, v, a, b, S)
and (ID, rP, m, T, v, a, b, S′).

Note that S = Q+cSID and S′ = Q+c′SID, we have SID = (c−c′)−1(S−S′).
Therefore, we can obtain SID = slP from P , sP and lP , i.e., we solved CDHP
in G1. ut

4 ID-based Threshold Signature Scheme without Trusted

PKG from Bilinear Pairings

Although the scheme [2] can incorporate the distributed PKGs, we argue that
it will decrease the efficiency of the scheme to solve the key escrow problem by
using distributed PKGs. In the following, based on the approach that the private
key associated with an identity rather than the master key of PKG is shared,
we propose an ID-based threshold signature scheme without distributed PKGs
which overcomes the key escrow problem.

Private Key Distribution : The public key setting is the same as above. Sup-

pose the private key of the user with identity ID is r and SID. He distributes

his private key to n servers as follows:

– Chooses ai ∈R Zq and Ri ∈R G1 for 1 ≤ i ≤ t − 1.
– Let

h(x) = r + a1x + a2x
2 + · · · + at−1x

t−1

H(x) = SID + xR1 + x2R2 + · · · + xt−1Rt−1

Computes the distributed private key h(i) = ri, H(i) = Si and the cor-
responding verification key li = riP , ui = e(P, Si) and then sends them
to server Γi for 1 ≤ i ≤ n. Note that h(x) =

∑

j∈Φ cΦ
xjrj and H(x) =

∑

j∈Φ cΦ
xjSj , where cΦ

xj =
∏

l∈Φ,l 6=j
x−l
j−l

, Φ ⊂ {1, 2, · · · , n} be a set and

|Φ| ≥ t.
– The server Γi verifies the validity of li, ui and publishes them while keeps

ri, Si secret.

Signing : Each of {Γj}j∈Φ performs the following to jointly create a signature

for a message m.

– Computes and broadcasts Tj = rjH2(m).
– Computes and broadcasts vj = e(H2(m), Sj).
– Computes and broadcasts aj = e(P, Qj), bj = e(H2(m), Qj), where Qj is a

randomly chosen element in G1.

– Computes a =
∏

j∈Φ a
cΦ
0j

j , b =
∏

j∈Φ b
cΦ
0j

j , v =
∏

j∈Φ v
cΦ
0j

j .
– Broadcasts Wj = Qj + cSj , where c = H(a, b, h, v) and h = e(H2(m), QID).



– Each server i ∈ Φ checks whether e(Tj , P ) = e(H2(m), lj), e(P, Wj) = aju
c
j

and e(H2(m), Wj) = bjv
c
j for j ∈ Φ and j 6= i. If the equations fails for some

j, then broadcasts Complaint against server j.

– If all the servers are honest, computes T =
∑

j∈Φ cΦ
0jTj , S =

∑

j∈Φ cΦ
0jWj .

Then (T, v, rP ) and the corresponding proof (a, b, S) is the signature of the
message of m.

Verification : The verifier first computes Q = H2(ID, rP ), h = e(H2(m), QID),
u = e(Ppub, QID), c = H1(a, b, h, v). He accepts the signature if the following

equations hold:

e(T, P ) = e(H2(m), rP )

e(P, S) = auc, e(H2(m), S) = bvc

5 Analysis of Our Threshold Signature Scheme

5.1 Correctness

Note that

T =
∑

j∈Φ

cΦ
0jTj =

∑

j∈Φ

cΦ
0jrjH2(m) = rH2(m)

S =
∑

j∈Φ

cΦ
0jWj =

∑

j∈Φ

cΦ
0j(Qj + cSj)

Therefore, we have

e(T, P ) = e(H2(m), rP )

e(P, S) = e(P,
∑

j∈Φ

cΦ
0j(Qj + cSj)) = e(P,

∑

j∈Φ

cΦ
0jQj + c

∑

j∈Φ

cΦ
0jSj)

= e(P,
∑

j∈Φ

cΦ
0jQj)e(P, SID)c = auc

and

e(H2(m), S) = e(H2(m),
∑

j∈Φ

cΦ
0j(Qj + cSj)) = e(H2(m),

∑

j∈Φ

cΦ
0jQj + c

∑

j∈Φ

cΦ
0jSj)

= e(H2(m),
∑

j∈Φ

cΦ
0jQj)e(H2(m), SID)c = bvc



5.2 Robustness

Theorem 3. The proposed ID-based threshold signature scheme is robust, i.e.,

the scheme outputs correctly even in the presence of a malicious adversary that

makes the corrupted servers deviate from the normal execution.

Proof. The robustness of “Private Key Distribution” is trivial for each servers
can validate his private key share using the published verification key share.

In the “Signing” protocol, if all the following equations hold, the server Γj

is sure not to be corrupted by a malicious adversary: e(Tj , P ) = e(H2(m), lj),
e(P, Wj) = aju

c
j and e(H(m), Wj) = bjv

c
j . ut

5.3 Security

Motivated by Gennaro et al ’s idea for proving the security of the threshold DSS
signature scheme, Baek and Zheng [2] defined “Simulatability” of the ID-based
threshold signature and proved the relationship between the security of ID-based
threshold signature and that of ID-based signature.

Definition 1. An ID-based threshold signature scheme is said to be simulatable
if the following conditions hold.

1. “Private Key Distribution” is simulatable: Given the system parameters params

and the identity ID, there exists a simulator which can simulate the view of the

adversary on an execution of “Private Key Distribution”.

2. “Signing” is simulatable: Given the system parameters params the identity

ID, the message m, the corresponding signature σ, t− 1 private key shares and

the corresponding verification key shares, there is a simulator which can simulate

the view of the adversary on an execution of “ Signing”.

Theorem 4. If an ID-based threshold signature scheme is simulatable and the

ID-based signature is secure in the sense of unforgeability, then the ID-based

threshold signature scheme is also secure in the sense of unforgeability.

Therefore, we only need to prove our ID-based threshold signature scheme is
simulatable.

Lemma 1. The proposed ID-based threshold signature scheme is simulatable.

Proof. (sketch) Without loss of generality, we assume that the servers corrupted
by the adversary are Γi, where 1 ≤ i ≤ t − 1. Firstly we prove “Private Key
Distribution” is simulatable. Given the system parameters params and the iden-

tity ID, the adversary computes u = e(Ppub, QID). Note that u =
∏t

j=1
u

cΦ
0j

i ,
so the adversary can compute u(t) and the simulated value u(t) is correct and
identically to the Γt as the real execution of the “Private Key Distribution”.
Similarly, the simulated value rtP can be generated correctly.

Then we prove “Signing” is simulatable. Given the system parameters params

the identity ID, the message m, the corresponding signature σ = (T, v, rP, a, b, S),



t − 1 private key shares (ri, Si) and the corresponding verification key shares
(riP, e(P, Si)). The adversary computes Ti = riH2(m). Let H(x) be a poly-
nomial like function of degree t − 1 such that H(0) = T and H(i) = Ti for
1 ≤ i ≤ t − 1. The adversary can compute and broadcast T (i) = H(i) for
t ≤ i ≤ n. Similarly, the adversary computes and broadcasts vi, ai, bi, Wi for
t ≤ i ≤ n. ut

With Theorem 2, Theorem 4 and Lemma 1, we can prove the following:

Theorem 5. The proposed ID-based threshold signature scheme is secure in the

sense of unforgeability.

6 Concluding Remarks

In this paper, we propose a new ID-based signature scheme without trusted
PKG. In our scheme, there is only one PKG who is not assumed to be trusted.
We argue that the proposed scheme combines the advantages of both ID-based
systems and CA-based systems. We then extend it to be an ID-based threshold
signature scheme, which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity rather
than the master key of PKG is shared. Our scheme is superior to those schemes
with distributed PKGs in terms of both the communication and computation
complexity.
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