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Abstract. A new type of signature scheme, called NTRUSign, based
on solving the approximately closest vector problem in a NTRU lattice
was proposed at CT-RSA’03. However no security proof against cho-
sen messages attack has been made for this scheme. In this paper, we
show that NTRUSign signature scheme contains the weakness of mal-
leability. From this, one can derive new valid signatures from any pre-
vious message-signature pair which means that NTRUSign is not secure
against strongly existential forgery. Finally, we propose a simple tech-
nique to avoid this flaw in NTRUSign scheme.
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1 Introduction

Recently, Hoffstein et al. introduced a new type of authentication and digital
signature scheme called NTRUSign [7] at CT-RSA’03. While traditional signa-
ture schemes are based on well-known hard problem such as factorization or
discrete log problem, the hard problem underlying NTRUSign is to find the ap-
proximately shortest(or closest) vectors in a certain lattice, called NTRU lattice
LNT

h . In this scheme, the signer uses secret knowledge to find a point in the
NTRU lattice close to the given point. He/She then exploits this approximate
solution to the closest vector problem as his signature. One of the significant
advantages is the fast operation: NTRU-based algorithms, for example, executes
hundreds of times faster while providing the same security than competing al-
gorithms such as RSA. In this paper, we claim that the NTRUSign signature
scheme, however, does not contain one of important cryptographic properties
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that the signature scheme should guarantee, non-malleability. We first suggest a
deterministic attack method how an attacker can generate new valid signatures
from the previously signed message. Next, we propose a simple technique to
avoid this attack.

History of NTRUSign scheme Since the advent of NTRU encryption scheme
based on a hard mathematical problem of finding short vectors in certain lat-
tices in 1996, several related signature schemes such as NSS [10] and R-NSS [6]
have been proposed. A fast authentication and digital signature scheme called
NSS, based on the same underlying hard problem and using keys of the same
form, was presented at Eurocrypt 2001 [10]. However, this scheme was broken
by Mironov and Gentry et al, see [3, 12]. In their Eurocrypt presentation, the
authors of NSS sketched a revised version of NSS (called R-NSS) and published
it in the preliminary cryptographic standard document EESS [18]. Although it
seemed that R-NSS was significantly stronger than the initial version(NSS), it
was proved that the key recovery attack could be mounted by Gentry and Szydlo
[4]. The source of these weaknesses about NSS and R-NSS was an incomplete
linking of the NSS method with the approximate closest vector problem in the
NTRU lattice. In other words, the weaknesses of NSS and R-NSS arose from
the fact that the signer did not possess a complete basis of short vectors for
the NTRU lattice LNT

h . Later on, Hoffstein et al. proposed a new NTRU based
signature scheme called NTRUSign. Unlike the old signature schemes, the link
in NTRUSign between the signature and the underlying approximate closest
vector problem is clear and direct: the signer must solve an “approximate CVP
problem” in the lattice i.e., produce a lattice point that is sufficiently close to a
message digest point. This paper, however, describes a weakness in NTRUSign:
from any given message-signature pair, one can derive many different signatures
of the same message, thus it is malleable.

Impact of malleability If a signature scheme is malleable, we can derive
another signature of the message from any message-signature pair. In this case,
we cannot distinguish it from the original one generated by who knows the secret
key, which can be in practice regarded as a forgery. Although such a weakness
does not allow the attacker to change the message string, this forgery shows that
the signature scheme cannot be used for all kinds of applications. For example, if
one would like to apply it to electronic cash, finding a second valid signature for
a given bill should be impossible. Also, an entity receiving the message-signature
pairs (m, s) and (m, s′) such that s 6= s′ at the same time, neither s nor s′ will
be accepted as a valid signature for the message m by him. If a legitimate signer
wants to assert s as his/her own signature for the message m, then he/she should
exhibit his/her private key, which is a negative property.

Our Contributions In this paper, we show how a passive adversary observing
only a valid message-signature pair can generate another signature on the same



message. The main idea of this forgery is to use specific polynomials of which
norm value is zero. Although this weakness might be overlooked for some ap-
plications, NTRUSign is not secure in the non-malleability sense against known
message attack. The notion of this security is well described in [16]. Finally we
propose a simple technique to avoid our proposed attack.

Organization The rest of this paper is organized as follows: In Section 2, we
briefly describe the NTRUSign signature scheme. We do not give all the technical
and theoretical details for the functions used in the scheme. Only the general
construction is described here.

In Section 3 we show how an attacker can forge an additional signature
for a message previously signed using some specific polynomials, and then in
Section 4, we introduce a simple method to avoid this weakness. Finally, we
make concluding remarks in Section 5.

2 Description of NTRUSign Algorithm

In this section, we briefly describe NTRUSign digital signature scheme. As
NTRU encryption scheme, basic operations take place in the quotient polyno-
mial ring R = Z[x]/(xN − 1), where N is the security parameter. A polynomial
a(x) ∈ R (shortly, a) can be presented by a vector a of its coefficients as follows:

a =
N−1∑

i=0

aix
i = (a0, a1, · · · , aN−1).

For the sake of simplicity, we will use the same notation for the polynomial
a(x) and the vector a. The product of two polynomials a and b in R is simply
calculated by a ∗ b = c, where the k-th coefficient ck is

ck =
k∑

i=0

aibk−i +
N−1∑

i=k+1

aibN+k−i =
∑

i+j≡k (mod N)

aibj .

In some steps, NTRUSign uses the quotient ring Rq = Zq[x]/(xN − 1), where
the coefficients are reduced by modulo q, where q is typically a power of 2,
for example 128. The multiplicative group of units in Rq is denoted by R∗q .
The inverse polynomial of a ∈ R∗q is denoted by a−1. If a polynomial a has all
coefficients chosen from the set {0, 1}, we call this a binary polynomial.

The security of NTRUSign scheme is based on the approximately closest
vector problem in a certain lattice, called NTRU lattice. In this scheme, the
signer can sign a message by demonstrating the ability to solve the approximately
closest vector problem reasonably well for the point generated from a hashed
message in a given space.

The basic idea is as follows: The signer’s private key is a short basis for an
NTRU lattice and his public key is a much longer basis for the same lattice. The
signature on a digital document is a vector in the lattice with two properties:



• The signature is attached to the document being signed.
• The signature demonstrates an ability to solve a general closest vector prob-

lem in the lattice.

NTRUSign digital signature scheme works as follows:

System Parameters
1. N : a (prime) dimension.
2. q: a modulus.
3. df , dg: key size parameters.
4. NormBound: a bound parameter of verification.

Key Generation
A signer creates his public key h and the corresponding private key {(f, g), (F, G)}
as follows:
1. Choose binary polynomials f and g with df 1’s and dg 1’s, respectively.
2. Compute the public key h ≡ f−1 ∗ g (mod q).
3. Compute small polynomials (F,G) satisfying f ∗G− g ∗ F = q.

Signing Step
A signer generates his signature s on the digital document D as follows:
1. Obtain the polynomials (m1,m2) mod q for the document D by using

the public hash function.
2. Write

G ∗m1 − F ∗m2 = A + q ∗B,

−g ∗m1 + f ∗m2 = a + q ∗ b,

where A and a have coefficients between −q/2 and q/2.
3. Compute polynomials s and t as

s ≡ f ∗B + F ∗ b (mod q),

t ≡ g ∗B + G ∗ b (mod q).

Here, a vector (s, t) ∈ LNT
h is very close to m = (m1,m2).

4. The polynomial s is the signature on the digital document D for the
public key h.

Verification Step
For a given signature s and document D, a verifier should do the following:
1. Hash the document D to recreate (m1,m2) mod q.
2. Using the signature s and public key h, compute the corresponding poly-

nomial
t ≡ s ∗ h (mod q),

which becomes exactly the same as the polynomial g ∗B +G∗b (mod q).
(Note that (s, t) is a point in the NTRU lattice LNT

h .)



3. Compute the distance from (s, t) to (m1, m2) and verify that this value
is smaller than the NormBound parameter. In other words, check that

‖ s−m1 ‖2 + ‖ t−m2 ‖2 ≤ NormBound2,

where the norm( ‖ · ‖) is a centered norm.

NTRUSign algorithm uses the centered norm concept instead of Euclidean
norm in verification step to measure the size of an element a ∈ R.

Definition 1. Let a(x) be a polynomial in ring R = Z[x]/(xN − 1). Then the
centered norm of a(x) is defined by

‖ a(x) ‖2 =
N−1∑

i=0

(ai − µa)2 =
N−1∑

i=0

ai
2 − 1

N
(
N−1∑

i=0

ai)2,

where µa =
1
N

N−1∑

i=0

ai is the average of the coefficients of a(x).

The centered norm of an n-tuple (a1, a2, · · · , an) with a1, a2, · · · , an ∈ R can
be defined by this formula

(‖ (a1, a2, · · · , an) ‖)2 =‖ a1 ‖2 + ‖ a2 ‖2 + · · ·+ ‖ an ‖2 .

Note that the signature on D is a vector (s, t) in NTRU lattice LNT
h , which is

very close to m. To solve an approximately closest vector problem in the lattice,
a signer uses a “short basis” defined as below:

Definition 2. A basis {(f, g), (F, G)} is called a short basis in LNT
h if

‖ f ‖, ‖ g ‖= O(
√

N), and ‖ F ‖, ‖ G ‖= O(N).

The signing process of NTRUSign may be explained by the following matrix
equation, which shows that the role of a signer is to find approximate solution
about the closest vector problem by using his short basis {(f, g), (F, G)}:

(
s t

)
=

(
B b

) (
f g
F G

)
=

⌊(
m1 m2

)(
G/q −g/q
−F/q f/q

)⌉ (
f g
F G

)

=

⌊
(
m1 m2

)(
f g
F G

)−1
⌉(

f g
F G

)

A valid signature demonstrates that the signer knows a lattice point that
is within NormBound of the message digest vector m. Clearly, the smaller that
NormBound is set, the more difficult it will be for an attacker, without knowl-
edge of the private key, to solve this problem. The designers recommend that
the suggested parameters (N, q, df , dg,NormBound) = (251, 128, 73, 71, 300) of-
fer security at least as strong as 1,024 bit RSA [8].



3 Weakness in NTRUSign

In this section we describe that the NTRUSign is strong existential forgeable,
sometimes this notion is called as malleable. Strong existential forgeability for
a given signature scheme means that one can create a message-signature pair
that has never been observed by the signer [16]. A different signature for a once
legitimately signed message can be regarded as a forgery. In practice, this forgery
shows that the NTRUSign scheme cannot be used for all kinds of applications.
For example, in electronic cash system, finding another valid signature for a given
bill should be impossible. Thus the application area of this scheme is limited,
because a digital signature scheme is selected according to both its security level
and the context of use.

Now we will describe how we can generate a valid signature different from a
previous valid signature for a given message. Remind that NTRUSign signature
scheme uses the centered norm concept in verification step. The centered norm
has quasi-multiplicative property, that is, ‖ a(x) ∗ b(x) ‖≈‖ a(x) ‖ ∗ ‖ b(x) ‖ for
random polynomials a(x) and b(x) in R, which was well discussed in [9]. The
properties of the centered norm will be employed to induce a new signature from
a given signature without knowing the private key.

The following lemma describes the centered norm properties:

Lemma 1. Let R be a quotient polynomial ring R = Z[x]/(xN − 1). Then

(i) In Rq = Zq[x]/(xN − 1), there exist exactly q polynomials α(x) such that
‖ α(x) ‖= 0.

(ii) If ‖ α(x) ‖= 0, then ‖ α(x) ∗ β(x) ‖= 0 for every polynomial β(x) ∈ R.

Proof. (i) It is obvious that α0 = α1 = · · · = αN−1 for αi ∈ (−q/2, q/2] if and
only if

∑N−1
i=0 (ai − µa)2 = 0 where µa = 1

N

∑N−1
i=0 ai, namely ‖ a(x) ‖= 0.

(ii) From the result of (i) we can know that all coefficients of α are the
same, say α = (α0, α0, · · · , α0). Then, clearly the k-th coefficient of α ∗ β is∑N−1

i=0 (α0βk−i)+
∑N−1

i=k+1(α0βN+k−i) = α0(β0+· · ·+βk+βk+1+βN−1) = α0∗β,
and so are the other coefficients of α ∗ β the same. Again by applying to (i), we
complete the proof of this lemma. ut

We call these q polynomials satisfying ‖ α(x) ‖= 0 annihilating polynomial.
These annihilating polynomials makes the NTRUSign algorithm to be malleable.

Hoffstein et al. argued that forgery of a signature in NTRUSign is equiva-
lent to solve an approximately closest vector problem in high dimension for the
class of NTRU lattices. It seems to be true if we do not consider the stronger
attack model. Historically, Goldwasser, Micali and Rivest [5] introduced the no-
tion of existential forgery against chosen-message attack for public key signature
scheme. This notion has become the de facto security definition for digital signa-
ture algorithm, against which all new signature algorithms are measured. In this
scenario, an adversary with access to the public key of the scheme and to a sign-
ing oracle, should not be able to forge a valid signature for some new message or



for a message of his choice(existential forgery and selective forgery, respectively).
An even stronger requirement called the non-malleability, or strong unforgeabil-
ity, also forbids an adversary to forge an additional signature for a message which
might already have been signed by the oracle [16]. We can see more detail se-
curity notions for digital signature scheme and the relation between them in [5,
14].

Now we will show that one can easily generate a message-signature pair that
has never been observed by the signer. To create additional valid signatures
we use the following observations: Note that all coefficients of polynomials are
reduced by modulo q.

Remark 1. Let α be an annihilating polynomial. Then ‖ r + α ‖≈‖ r ‖ for
randomly chosen polynomial r ∈ R.

If both “reduced form” and “not reduced form” of polynomial r+α are equal,
then the centered norm values of ‖ r ‖ and ‖ r + α ‖ are exactly the same. The
differences between ‖ r + α ‖ and ‖ r ‖ are caused from only the gap failure.
The concepts of gapping and wrapping failure are presented in [15]. We have
implemented the above remark with the suggested parameters 1,000 times for
each α using Mathematica 4.2. It is clear that as the coefficients of annihilating
polynomial gets smaller, the probability of having the same norm gets higher.
When the coefficient of α is ±1 or ±2, our experiment shows that each proba-
bility which two centered norm values are exactly the same becomes 0.15 and
0.015 approximately. Figure 1 describes the distribution of distances between
‖ r + α ‖ and ‖ r ‖ for random polynomial r ∈ R, where the x-axis denotes
the integer coefficient αi of an annihilating polynomial and y-axis denotes the
average distance between ‖ r + α ‖ and ‖ r ‖ for random polynomial r.

Fig. 1. Distance between ‖ r + α ‖ and ‖ r ‖



We will see some results induced from the properties of an annihilating poly-
nomial. For any polynomial f = (f0, f1, · · · , fN−1) ∈ R, V(f) denotes the sum
of all coefficients of f modulus q, that is,

V(f) = f(1) =
N−1∑

i=0

fi (mod q) ∈ Zq. (1)

For any f ∈ R, the product f ∗ α can be presented by V(f)α, where α is an
annihilating polynomial (See the proof of Lemma 1.).

From (1) it is trivial that V has the following properties:

Lemma 2. Let f and g be two polynomials in R.

(i) V(f)V(g) ≡ V(f ∗ g) (mod q).
(ii) V(f−1) ≡ V(f)−1 (mod q) if f has an inverse in Rq.

Proof. By definition of V, we have

V(f)V(g) ≡ f(1)g(1) = (f ∗ g)(1)
≡ V(f ∗ g) (mod q).

Obviously V(f−1)V(f) ≡ V(f−1 ∗ f) ≡ V(1) ≡ 1 (mod q), hence V(f−1) ≡
V(f)−1 (mod q). ut

Assume that one chooses two polynomial pair (f, g), where f has an in-
verse in Rq. If there exists somewhat small integer α0 ∈ (−q/2, q/2] satisfying
α0V(f)−1V(g) (mod q) is also small, then we can know that both polynomial
α = (α0, α0, · · · , α0) and (f−1 ∗ g) ∗ α are annihilating polynomials with some-
what small coefficients from Lemma 2.

Remark 2. In the suggested parameters (df , dg) = (73, 71) given in [8], one has
V(f) = −55 and V(g) = −57. In this case one can choose α = 8

∑N−1
i=0 xi so that

h ∗ α (mod q) = V(h)α = V(f−1 ∗ g) ∗ α

= V(f)−1V(g) ∗ α

= −8
N−1∑

i=0

xi.

For a given signature (s, t) ∈ LNT
h generated under the suggested parameters,

we take s′ = s + α (mod q), where α = 8
∑N−1

i=0 xi. Then the corresponding
signature pair t′ is

t′ = s′ ∗ h (mod q) = s ∗ h + α ∗ h (mod q)

= t− 8
N−1∑

i=0

xi (mod q).



At this time, we can expect that both ‖ s − m1 ‖ and ‖ t − m2 ‖ are
small. Moreover, it is plausible that the small number of their coefficients are
out of the range (−64 + 8, 64 − 8]. Form these reasons, the new lattice point
(s′, t′) = (s + 8

∑N−1
i=0 xi, t − 8

∑N−1
i=0 xi) will be another valid signature with

high probability. Simply speaking, if one has s − m1 without any coefficients
greater than 56 and t−m2 without any coefficients less than −55, then one can
have the following equation exactly:

‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 = ‖ s−m1 ‖2 + ‖ t−m2 ‖2
≤ NormBound2,

which means that (s′, t′) is always another valid signature.

A numerical experimental result shows that one has much more chance to
succeed in the proposed attack: we examine a set P that consists of 128,000
elements from Z128[x]/(x251 − 1) generated in such a way that all coefficients
are randomly chosen from normal distribution with uniformly chosen means

µ ∈ (−64, 64] and a fixed standard deviation σ =
√

NormBound2/N ≈ 18.9. For
two sets

P ′ = {s ∈ P | ‖ s ‖2 < 3002} and P ′′ = {s ∈ P ′ | ‖ s + 8
N−1∑

i=0

xi ‖2< 3002},

we obtained the result that the set P ′ consists of 20,650 distinct elements and
that P ′ and P ′′ coincide exactly.

We implemented the full NTRUSign signature scheme as described in [8] and
[17] with suggested parameters using GNU MP version 4.1.2. Our experiment
illustrates that the proposed forgery s′ almost always succeeds for given message
document D and a valid signature s. Table 1 depicts the approximate probabil-
ity that new pair (s′, t′) = (s + α, t + h ∗α) (mod q) would be another signature
for a given valid signature (s, t). In Table 1, note that αi denotes the coefficient
of an annihilating polynomial α and two sets A and B mean as follows:

A = {(s, t) ∈ LNT
h | (s, t) is a valid signature for given message m}

and

B = {(s′, t′) ∈ LNT
h | (s′, t′) is a valid forged signature for given message m},

respectively.

Remark 3. The EESS#1 standard introduces the centering method in the com-
putation of centered norm [17, 18]. This centering method means that if the
center of t not reduced modulo q is near to q

2 or − q
2 , then the coefficients of t are

properly shifted before being reduced modulo q. Because this centering method
removes any effect of wrapping, if we use this method, then our analysis always
holds.



αi Success Prob(B|A)
1 0.836
2 0.644
...

...
7 0.707
8 0.889
9 0.852
...

...
63 0.167
64 0.165

Table 1. Approximate forgery probability when N = 251, q = 128

4 Repairing NTRUSign

In this section we present a simple way in order to avoid the weakness in the
NTRUSign signature scheme. The strategy for repairing NTRUSign is to make
the signing transformation one-to-one corresponding on a given secret key. It
can be achieved by adding an annihilating polynomial in the signing step. Our
idea is to make the most significant coefficient (i.e., the coefficient of xN−1) of
the signature s obtained from the original NTRUSign to be zero. If the distance
between the new signature s′ computed by this process and the given point is
not as close as to the expected distance (i.e., NormBound), then we simply add
the annihilating polynomial

∑N−1
i=0 xi to the signature s′ until it becomes to a

valid signature.
The repaired version of NTRUSign scheme is as follows:

Signing Signer generates his signature s′ on the digital document D

INPUT: private key {(f, g), (F,G)} and hashed message (m1,m2)
OUTPUT: valid signature s′

1. Obtain the signature s from the original NTRUSign.
2. Set s′ ←− s− sN−1

∑N−1
i=0 xi (mod q).

3. While ‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 > NormBound2 do the following:

3.1. Set s′ ←− s′ +
∑N−1

i=0 xi (mod q).
4. Return(s′).

Verifying Receiver verifies the signature s′

INPUT: signature s′ and sender’s public key h



OUTPUT: “Accept” or “Reject”

1. Compute t′ = s′ ∗ h (mod q).
2. If ‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 > NormBound2, then return(“Reject”).
3. While s′N−1 6= 0:

3.1. Set s′ ←− s′ −∑N−1
i=0 xi (mod q).

3.2. If ‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 ≤ NormBound2, then return(“Reject”).
4. Return(“Accept”).

It is obvious that our modification does not degenerate the security of the
original NTRUSign scheme. Actually two problems based on original NTRUSign
and repaired NTRUSign are computationally equivalent. Although our proposed
attack cannot be applied for repaired NTRUSign anymore, we do not know
whether the repaired version of NTRUSign is non-malleable. It is an open prob-
lem to prove that the repaired NTRUSign is non-malleable signature scheme.

5 Concluding Remarks

In this paper we described a weakness of NTRUSign digital signature scheme
that can cause significant problems in some real applications if one is not aware of
it. We showed that NTRUSign signature scheme is not secure in terms of strongly
existential forgeable, thus it is malleable. This notion allows an adversary to find
new signatures for a message of his choice, given a signature for this message.
This forgery requires a specific polynomial with small coefficient satisfying its
norm value equal to zero. Even if this forgery does not admit an adversary to
change the message, NTRUSign scheme cannot be used for all applications. We
also proposed a simple technique to repair the scheme.
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