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Abstract— In this paper we construct a new interactive identification scheme based on the conjugacy
problem. We prove that this scheme is secure against passive attacks if the matching triple search
problem (MTSP) is intractable. Our proof is based on the fact that the conjugacy search problem
(CSP) is hard in braid group, on the other hand, the conjugacy decision problem (CDP) is easy in
braid group by Ko et al.’s algorithm.
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1 Introduction

Braid Cryptography. The braid group were first
introduced to construct a key agreement protocol and a
public-key encryption scheme at CRYPTO 2000 by Ko
et al. [1]. Within the last years various attempts have
been made to derive cryptographic primitives from prob-
lems originating in combinatorial group theory. As pos-
itive results are the discovery of a hard-core predicate
for the conjugacy search problem in the braid group,
and implementation of braid computation, and a con-
version of the public-key encryption schemes into a
provable one. But to the best of our knowledge, there
is no identification scheme based on conjugacy problem
over a braid group in the open literature.

Identification Scheme. It is well known that an
identification scheme is a very important and useful
cryptographic tool. The identification scheme is an in-
teractive protocol where a prover, P, tries to convince
a verifier, V, of his identity. Only P knows the secret
value corresponding to his public one, and the secret
value allows to convince V of his identity. If we re-
place “identity” by “authenticity” of messages, iden-
tification schemes are nearly equivalent to signature
schemes. As mentioned by Fiat and Shamir [4] and
Shoup [13], the distinction between identification and
signature schemes is very subtle. Therefore, two types
of schemes can be used interchangeably [4, 9, 10, 8].

Our Contribution. In this paper we construct an in-
teractive identification scheme based on the conjugacy
problem. We prove that this scheme is secure against
passive attacks if the matching triple search problem
(MTSP) is intractable. Our proof is based on the fact
that the conjugacy search problem (CSP) is hard in
braid group, on the other hand, the conjugacy decision
problem (CDP) is easy in braid group by Ko et al.’s
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algorithm.

Outline of Paper. The rest of this paper is orga-
nized as follows: After describing the history of braid
cryptography in this section, we state some prelimi-
naries in Section 2. In Section 3 we present our iden-
tification scheme. In Section 4 we formally state our
definition of security and give a proof of security and
zero-knowledge for our scheme. Finally, we end with
concluding remarks.

2 Preliminaries

2.1 Braid Groups

A braid is obtained by laying down a number of par-
allel strands and intertwining them so that they run
in the same direction. The number of strands is called
the braid index. The set Bn of isotopy classes of braids
of index n is naturally equipped with a group struc-
ture, called the n-braid group, where the product of
two braids x and y is nothing more than laying down
the two braids in a row and then matching the end of
x to the beginning of y.

Any braid can be decomposed as a product of simple
braids. One type of simple braids is the Artin generator
σi that has a single crossing between i-th and (i + 1)-
th strand. Bn is presented with the Artin generators
σ1, . . . , σn−1 and relations σiσj = σjσi for | i − j |> 1
and σiσjσi = σjσiσj for | i− j |= 1. When a braid a is
expressed as a product of Artin generators, the mini-
mum number of terms in the product is called the word
length of a. An example of braid and the generator is
given in Figure 1.

We have still other presentations. Let Sn be the
symmetric group of an n-element set In = {1, 2, . . . , n}.
Let Ref = {(i, j) | 1 ≤ i < j ≤ n} be the set of
reflections (that interchange two elements and fix the
other elements of In) in Sn and S the subset {(i, i+1) |
1 ≤ i < n} of Ref . We define `(x) the length of a
permutation x in Sn as

`(x) = min{k | x1 · · ·xk for xi ∈ S}



Figure 1: An example of braid and the generator

Bn admits another presentation with generators {rx |
x ∈ Sn} and relations r(xy) = (rx)(ry) if `(xy) =
`(x) + `(y). In this presentation, the longest permuta-
tion w0 with w0(i) = n+1−i yields a braid ∆, which is
called the fundamental braid or the half-twist depend-
ing on authors. Let B+

n denote the submonoid of Bn

generated by Sn. A braid in B+
n is said to be positive.

A braid x is written uniquely, x = ∆kx′ where x′ is in
B+

n −∆B+
n . This is called the normal form of x.

There is a partial order on B+
n : x ≤ y ⇔ y ∈ xB+

n .
The ordering is inherited to Sn (We identify a permu-
tation σ with the corresponding braid rσ in B+

n . We
denote rSn by Ω for the sake of simplicity. For a braid
x ∈ B+

n , the greatest element of the set {y ∈ Ω | y ≤ x}
is called the left most factor of x and denoted by LF (x).
A sequence of braids (x1, . . . , xk) in Ω − {1} is called
the greedy form of x if x1 · · ·xk = x, LF (xixi+1) = xi

for all i. The above k in the greedy form is called the
Charney length of x. This length function is easily ex-
tended to general braids using Thurston normal form.

2.2 Cryptographic Assumptions

Conjugacy Problems. In a non-commutative group
G, two elements x, y in G are conjugate each other,
written x ∼ y if y = a−1xa for some a ∈ G. Here
a or a−1 is called a conjugator and the pair (x, y) is
said to be conjugate. Clearly ∼ is an equivalence rela-
tion. A simple and natural question to ask in a non-
commutative group G is the conjugacy problem that
can be described as a decision version and a computa-
tional version. The conjugacy decision problem(CDP)
asks to determine whether x ∼ y for a given instance
(x, y) ∈ G × G. The conjugator search problem(CSP)
asks to find a ∈ G satisfying y = a−1xa for a given
instance (x, y) ∈ G × G such that x ∼ y. We have
to be careful when we mention instances in an infinite
group G. In the current information theory, it is hard
to discuss a uniform distribution in G of elements de-
scribed by randomly chosen information. To avoid any
potential controversy, we always assume that instances
to a problem are randomly chosen in a finite subset of
an infinite group G restricted by system parameters

We say a problem is solvable (feasible) if there is a
deterministic finite (probabilistic polynomial-time) al-
gorithm that outputs a solution that is accurate (accu-
rate with non-negligible probability). The solvability is
a mathematical notion and the complexity of an algo-
rithm is not an issue as long as it is finite. A solvable

problem is not necessarily feasible and vice versa.
The representation theory tells us that for any group

G there are homomorphisms from G to rings that are
invariant under conjugacy relation. Therefore CDP is
always feasible although CDP may not be solvable. But
the remaining question concerning CDP is how to con-
struct an efficient algorithm to solve CDP with over-
whelming probability.

On the other hand, there are many candidates for
non-commutative groups where CSP is infeasible. How-
ever there is a normal form (such as Jordan form) of
a conjugacy class in many matrix groups and so it is
difficult to find a non-commutative group given as a
subgroup of a matrix group that has an infeasible CSP.
Therefore non-commutative groups with infeasible CSP
are usually given by presentations.

We believe that CSP is infeasible in the braid groups
Bn even though it is solvable. We will construct an
efficient algorithm to give a solution to CDP with over-
whelming accuracy. Unfortunately we do not know
whether there is a polynomial-time algorithm that de-
cides CDP.

• k-Simultaneous Conjugator Search Problem (k-SCSP)
Instance : k pairs (x1, x

′
1), . . . , (xk, x′k) ∈ G×G such

that x′i = a−1xia for all i.
Objective : Find b ∈ G such that x′i = b−1xib for all i

It is reasonable to believe that k-SCSP becomes eas-
ier as k increases. In particular a solution to CSP is
almost unique for the braid groups and so k-SCSP is
easier than CSP.

Matching Conjugacy Problems. For a noncom-
mutative group G, a pair (x, x′) ∈ G × G is said to
be CSP-hard if x ∼ x′ and CSP is infeasible for the in-
stance (x, x′). If (x, x′) is CSP-hard, so is clearly (x′, x).
We now define two matching conjugacy problems in G
that are equivalent and provide a foundation of our sig-
nature scheme.

• Matching Conjugate Search Problem (MCSP)
Instance : A CSP-hard pair (x, x′) ∈ G and y ∈ G.
Objective : Find y′ ∈ G such that y ∼ y′ and

xy ∼ x′y′

• Matching Triple Search Problem (MTSP)
Instance : A CSP-hard pair (x, x′) ∈ G and y ∈ G.
Objective : Find a triple (α, β, γ) ∈ G×G×G such

that α ∼ x, β ∼ γ ∼ y, αβ ∼ xy, and αγ ∼ x′y

If CSP in G is infeasible, instances of MCSP or MTSP
can be given as x, x′, y ∈ G such that x ∼ x′. In the de-
scription of the two matching problems, we do not want
to exclude a group where CSP is partially infeasible,
that is, the probability that a random conjugate pair
(x, x′) is CSP-hard is non-negligible. If a conjugate pair
(x, x′) is not CSP-hard, that is, an element a ∈ G with
x′ = a−1xa can be known, then y′ = a−1ya is a solution
to MCSP and (α, β, γ) = (b−1xb, b−1yb, b−1aya−1b) is a
solution to MTSP for any b ∈ G and so the two match-



ing conjugacy problems are feasible. These solutions
are said to be obvious.

Fact 1 In a non-commutative group G, MCSP is fea-
sible if and only if MTSP is feasible.

Proof. See the proof of ‘Theorem 1’ in [2] ¥

2.3 Ko et al.’s Conjugacy Signature

A braid-based signature scheme [BSS(braid signature
scheme) for shortly] is introduced by Ko et al. in [2].
Now we describe the BSS.
Key generation: A public key is a CSP-hard pair
(x, x′) in G and a secret key is a for x′ = a−1xa.
Signing: Given a message m, choose b ∈ G at random
and let α = b−1xb and y = h(m‖α), then a signature σ
is given by a triple σ = (α, β, γ) where β = b−1yb and
γ = b−1aya−1b.
Verifying: A signature σ is valid if and only if α ∼ x,
β ∼ γ ∼ y, αβ ∼ xy, and αγ ∼ x′y.

2.4 Identification Schemes

Interactive Identification Scheme. An identifi-
cation protocol or entity authentication protocol, which
allows one party to gain assurances that the identity of
another is as declared, thereby preventing imperson-
ation.

An identification protocol is considered to be as an
interactive protocol and the general setting for the pro-
tocol involves a prover or claimant P and a verifier V.
In general, P tries to convince the verifier V of his
identity. The verifier is presented with, or presumes
beforehand, the purported identity of the prover. The
goal is to corroborate that the identity of the prover is
indeed P, i.e., to provide entity authentication. Only
P knows the secret value corresponding to his public
one, and the secret value allows to convince V of his
identity.

A primary purpose of identification is to facilitate
access control to a resource, when an access privilege
is linked to a particular identity. Examples of these
cases are local or remote access to computer accounts,
withdrawals from automated cash dispensers, or phys-
ical entry to restricted area or border crossings. In
many applications such as cellular telephony the mo-
tivation for identification is to allow resource usage to
be tracked to identified entities, to facilitate appropri-
ate billing. Identification is also typically an inherent
requirement in authenticated key establishment proto-
cols.

Objectives of Identification Schemes. From the
point of view of the verifier, the outcome of an iden-
tification protocol is either acceptance of the prover’s
identity as authentic, or rejection. More specifically,
the objectives of an identification protocol include the
following.

1. In the case of honest parties P and V, P is able
to successfully authenticate himself to V, i.e., V

will complete the protocol having accepted P’s
identity.

2. (Transferability) V cannot reuse an identification
exchange with P so as to successfully impersonate
P to a third party A.

3. (Impersonation) The probability is negligible that
any party A distinct from P, carrying out the
protocol and playing the role of P, can cause V
to complete and accept P’s identity.

4. The previous points hold even if: a polynomially
large number of previous authentication between
P and V have been observed; the adversary A has
participated in previous protocol executions with
either or both P and V; and multiple instances
of the protocol, possibly initiated by A, may be
run simultaneously.

The precise definition of goals for an identification
protocol is given with respect to provable security against
the attacks in later. Informally speaking, the objec-
tives derive the idea of zero-knowledge-based protocols
whose executions do not reveal any partial information
which makes A’s task any easier whatsoever.

2.5 Attack Model

Types of attack. What an identification scheme
is broken means that an adversary succeeds in an im-
personation attempt (making the verifier accept with
non-negligible probability). We can classify the type
of attacks according to the interaction allowed to the
adversary before an impersonation attempt [13].

The weakest form of attack is a passive attack, where
the adversary is not allowed to interact with the system
at all before attempting an impersonation; the only in-
formation the adversary has is the public key of the
prover. Other attacks of intermediate level such as
eavesdropping attack or honest-verifier attack are es-
sentially equivalent to a passive attack.

The strongest form of attack is an active attack, in
which the adversary is allowed to interact with P sev-
eral times, posing as V. We may consider active attacks
as adaptive chosen-cipher text attacks. we should note
that active attacks are quite feasible in practice.

3 Our Proposed Scheme

In this section, we present our identification scheme.
Let Bn be a braid group where CSP is infeasible and
CDP is feasible. Let h : {0, 1}∗ −→ Bn be a hash func-
tion, that is, h is a collision-free one-way function that
outputs an element of Bn expressed by a fixed amount
of information. For example h can be given by a com-
position of a usual hash function of bit strings with a
conversion from bit strings of a fixed length to elements
of Bn.

Key generation. On input k, the key generation al-
gorithm G works as follows:

1. Generate a braid group Bn.



2. Generate a CSP-hard pair (x, x′) ∈ Bn×Bn such
that x′ = a−1xa.

3. The public parameter is Pub = 〈Bn, (x, x′)〉, and
the secret parameter is Sec = 〈a〉. And then pub-
lish them.

Protocol actions between P and V.
As is the case for other identification schemes, our pro-
tocol consists of ∆-times challenge-response protocol
where ∆ is a security parameter as usual identification
protocol. The 1 round challenge-response protocol is
described as follows:

1. P chooses s ∈ Bn at random, computes X =
s−1xs, X ′ = a−1Xa, and sends 〈X, X ′〉 to V.

2. V picks r ∈ Bn at random, and sends r to P.

3. On receiving r, P computes α, y, β, and γ such
that

α = r−1Xr

y = h(X‖α)
β = r−1yr

γ = r−1aya−1r

and sends it to V; V accepts P’s proof of identity
if all of α = r−1Xr, Xx ∼ X ′x′, α ∼ X, β ∼
γ ∼ y, αβ ∼ Xy, and αγ ∼ X ′y are satisfied and
rejects otherwise.

Our proposed scheme repeats ∆-times of the Pro-
tocol actions between P and V. This identification
scheme is represented graphically in Figure 2. Once
after this scheme can be proved to be secure against
passive adversaries.

P V

X=s-1xs

X´=a-1Xa

s ∈R Bn

X , X´

r∈R Bn
r

α=r -1Xr
y=h(X‖α)

β= r -1yr

γ = r -1aya-1r

(α, β, γ)

Figure 2: Proposed Scheme

4 Security Analysis

In this section, we analyze our proposed scheme.
First we recall the definition of secure identification
scheme by Feige et al. and then we prove the scheme
is secure against the impersonation attack under the
definition given by Feige et al. [3].

4.1 Secure Identification

Let us remind a secure identification scheme based
on the definition given by Feige et al. [3]

Definition 1 An identification scheme (P,V) is se-
cure if

SI-1 (P,V) succeeds with overwhelming probability.

SI-2 There is no coalition of P̃ and Ṽ with the property
that, after a polynomial number of executions of
(P, Ṽ) and relaying a transcript of the communi-
cation to P̃, it is possible to execute (P̃,V) with
non-negligible probability of success. The proba-
bility is taken over the distribution of the public
key and the secret key as well as the coin tosses of
P, Ṽ, P̃, and V, up to the time of the attempted
impersonation.

4.2 Security Proof

Theorem 1 The proposed scheme satisfies the proper-
ties of secure identification scheme [3].

Proof.
SI-1. P can convince the V of his identity with probabil-
ity 1. Honest prover can compute the values, X, X ′, α, y,
β, and γ for any random challenge value r from V.
After receiving (α, β, γ), V outputs the ‘accept’ with
probability 1. Because the V always check the veri-
fying equation easily by using the conjugacy decision
algorithm.

α = r−1Xr ; so, α ∼ X

X ′x′ = a−1Xaa−1xa = a−1Xxa, Xx ∼ X ′x′

β = r−1yr ; so, β ∼ y

γ = r−1aya−1r = (a−1r)−1y(a−1r) ; so, γ ∼ y

αβ = r−1Xrr−1yr = r−1Xyr ; so, αβ ∼ Xy

αγ = r−1Xrr−1aya−1r

= r−1Xaya−1r

= r−1aX ′ya−1r

= (a−1r)−1X ′y(a−1r)

So, αγ ∼ X ′y.
Above equation is always successful. So, this shows
that our proposed scheme satisfies the property SI-1.

SI-2. First, we define the adversary, A who works as
follows:



1. A runs the protocol for several times as verifier.
This means that (P,A) works. A takes the data
from the (P,A) in his memory.

2. A runs the protocol for several times as prover.
This means that (A,V) works. In this stage, A
tries to impersonate the prover.

If the success probability of A is negligible, we can
obtain the property SI-2 of our proposed scheme.

After the stage 1, A gets the data D1, D2, . . . , Dk.

(Di = {Xi, X
′
i, ri, αi, yi, βi, γi})

On stage 2, A sends Xt, X
′
t ( Xt ∈ Dt (1 ≤ t ≤ k) )

to verifier and gets a random challenge r from veri-
fier. For impersonating the prover, A must compute
the value γ = r−1ah(Xt‖r−1Xtr)a−1r without know-
ing the secret value a. Because it is impossible that find
other solution which satisfies β ∼ γ, γ ∼ y, αγ ∼ X ′y.
From the infeasibility of k-SCSP, the success probabil-
ity is negligible. This means that it is infeasible to get
a from any number of pairs (riγir

−1
i , yi) = (ayia

−1, yi).
Therefore there is no dishonest prover who can imper-
sonate with non-negligible probability.

This completes the proof of Theorem 1. ¥

5 Comparison

In this section we compare our proposed scheme with
previous identification schemes (KK scheme, Schnorr
scheme and GQ scheme) in the point of public key size,
existence of security proof, 1-round running time, secu-
rity against active attack and cryptographic problem.
Table 1 shows the result of our comparison.

The proof of security is given for all object schemes.
But Schnorr scheme and GQ scheme gives only security
against passive attacks. KK scheme, Schnorr scheme,
GQ scheme and our proposed scheme are based on
BDH(bilinear Diffie-Hellman) problem, DLP (discrete
logarithm problem), IFP (integer factorization prob-
lem), and MTSP, respectively. Their public key size
are 512 bit, 512 bit, 1024 bit and 591 bit, respectively.

The modular multiplication speed on Pentium 3 866MHz
is 0.115 ms in [?]. The number of modular multiplica-
tions and point additions are given in [?, 8] and we
can estimate that A≤2M. KK scheme takes 140A+2M
for P’s processing and 141M for V’s. So, estimating
times are 32.4 ms (P) and 16.2 ms (V). P’s processing
is same as braid signature’s signing. So, it takes 25.8
ms. V have 2 conjugacy decision more than verifying
of [2]. Conjugacy decision algorithm takes 5.15ms. V’s
processing time takes 36.1(= 25.8 + 10.3) ms.

Comparison KK02 Schnorr96 GQ88 Our scheme

Security proof Yes Yes Yes Yes
Public Key Size (bits) 512 512 1,024 591
Active attack Security Yes No No Yes
Cryptographic problem BDH DLP IFP MTSP

1-Round running time (P) 32.4 24.2 7.0 25.8
estimation(ms) (V) 16.2 24.2 3.9 36.1

Table 1: Comparison with previous schemes

6 Concluding Remarks

In this paper, we design and analysis of secure iden-
tification schemes against passive adversaries. We have
reviewed previous works. And then we have presented
our suggestions to solve the problems.

We have presented a practical construction of a new
identification scheme based on the conjugacy problem
on the braid group. The identification scheme is typi-
cal three-round (canonical) identification. In the open
literature, there is no identification scheme based on
conjugacy problem over braid groups. We have settles
the the our proposed model of our approach. Then we
prove that our identification scheme satisfies the prop-
erty for secure identification schemes.

We hope that our scheme can open the new genre
of braid cryptosystem. As a future works, we modify
our scheme to be more efficient and implement the our
proposed scheme. We will re-evaluate the current se-
curity proof more rigorously and try to design another
identification scheme based Shoup-like approach [13].
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