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Abstract— A new type of signature scheme, called NTRUSign, based on solving the approximately
closest vector problem in a NTRU lattice was proposed at CT-RSA’03. However no security proof
against chosen messages attack has been made for this scheme. In this paper, we show that NTRUSign
signature scheme contains the weakness of malleability. From this, one can derive new valid signatures
from any previous message-signature pair which means that NTRUSign is not secure against strongly
existential forgery. Finally, we propose a simple technique to avoid this flaw in NTRUSign scheme.
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1 Introduction

Recently, Hoffstein et al. introduced a new type
of authentication and digital signature scheme called
NTRUSign [7] at CT-RSA’03. While traditional signa-
ture schemes are based on hard problem such as fac-
toring problem or discrete log problem, the hard prob-
lem underlying NTRUSign is to find the approximately
shortest(or closest) vectors in a certain lattice, called
NTRU lattice. In this scheme, the signer uses secret
knowledge to find a point in the NTRU lattice close
to the given point. He/She then exploits this approxi-
mate solution to the closest vector problem as his sig-
nature. This signature scheme does not contain one of
important cryptographic properties that the signature
scheme should guarantee, non-malleability. In this pa-
per, we suggest a kind of deterministic attack method
how an attacker can generate new valid signatures from
previous signed message.

History of NTRUSign scheme Since the advent of
NTRU encryption scheme based on a hard mathemat-
ical problem of finding short vectors in certain lattices
in 1996, several related signature schemes such as NSS
[10] and R-NSS [6] have been proposed. A fast au-
thentication and digital signature schemes called NSS,
based on the same underlying hard problem and us-
ing keys of the same form, was presented at Eurocrypt
2001 [10]. However, this scheme was broken by Mironov
and Gentry et al., see [3, 12]. In their Eurocrypt pre-
sentation, the authors of NSS sketched a revised ver-
sion of NSS (called R-NSS) and published it in the
preliminary cryptographic standard document EESS
[18]. Although R-NSS was considered to be signifi-
cantly stronger than the previous version(NSS), Gen-
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try and Szydlo proved that key recovery attack could
be mounted [4]. Later on, Hoffstein et al. proposed a
new NTRU based signature scheme called NTRUSign
using NTRU lattices. This paper describes a weak-
ness in NTRUSign: from any given message-signature
pair, one can derive many different signatures of the
same message, thus it is malleable. We propose a sim-
ple technique from which repairs the scheme in order
to remove this malleability.

Impact of malleability If a signature scheme is mal-
leable, we can derive a second signature of the mes-
sage from any message-signature pair. In this case,
one cannot distinguish the second one from the origi-
nal one generated by who knows the secret key, which
can be in practice regarded as a forgery. Although such
a weakness does not allow the attacker to change the
message string, this forgery shows that the signature
scheme cannot be used for all kinds of applications.
For example, if one would like to apply it to electronic
cash, finding a second valid signature for a bill should
be impossible. Also, an entity receiving the message-
signature pairs (m, s) and (m, s′) such that s 6= s′ at
the same time, neither s nor s′ will be accepted as a
valid signature for the message m by him. If a legiti-
mate signer wants to assert s as his/her own signature
for the message m, then he/she should exhibit his/her
private key.

Our Results In this paper, we show how a passive
adversary who observes only a valid message-signature
pair can generate another signature. The main idea
of this forgery is to use specific polynomials of which
norm value is zero. While this weakness might be over-
looked for some applications, NTRUSign is not secure
in the non-malleability sense against known message
attack. The notion of this security is well described in
[16]. Finally we propose a simple technique to avoid
our proposed attack.



Organization The rest of this paper is organized as
follows: In Section 2, we briefly describe the NTRUSign
signature scheme. We do not give all the technical and
theoretical details for the functions used in the scheme.
Only the general construction is described in this pa-
per.

In Section 3 we show how an attacker can forge an
additional signature for a message already signed by
using some specific polynomials, and then in Section 4,
we introduce a simple method to avoid this weakness.
Finally, we make a concluding remark in Section 5.

2 Description of NTRUSign Algorithm

In this section, we briefly describe the NTRUSign
digital signature scheme. As NTRU encryption scheme,
basic operations take place in the quotient ring R =
Z[x]/(xN − 1), where N is the security parameter. A
polynomial a(x) ∈ R can be presented by a vector a of
its coefficients as follows:

a =
N−1
∑

i=0

aix
i = (a0, a1, · · · , aN−1).

For the sake of simplicity, we will use the same no-
tation for the polynomial a(x) and the vector a. The
product of two polynomials a and b in R is simply cal-
culated by a ∗ b = c, where the k-th coefficient ck is

ck =

k
∑

i=0

aibk−i +

N−1
∑

i=k+1

aibN+k−i =
∑

i+j≡k (mod N)

aibj .

In some steps, NTRUSign uses the quotient ring Rq =
Zq[x]/(xN − 1), where the coefficients are reduced by
modulo q, where q is typically a power of 2, for example
128. The multiplicative group of units in Rq is denoted
by R∗

q . The inverse polynomial of a ∈ R∗

q is denoted by
a−1. If a polynomial a has all coefficients chosen from
the set {0, 1}, we call this binary polynomial.

The security of NTRUSign scheme is based on the
approximately closest vector problem in a certain lat-
tice, called NTRU lattice. In this scheme, the signer
can sign a message by demonstrating the ability to solve
the approximately closest vector problem reasonably
well for the point generated from a hashed message in
a given space. The basic idea is as follows: The signer’s
private key is a short basis for an NTRU lattice and his
public key is a much longer basis for the same lattice.
The signature on a digital document is a vector in the
lattice with two properties:

• The signature is attached to the digital document
being signed.

• The signature demonstrates an ability to solve a
general closest vector problem in the lattice.

NTRUSign algorithm uses the centered norm con-
cept instead of Euclidean norm in verification step to
measure the size of an element a ∈ R.

Definition 1 Let a(x) be a polynomial in ring R =
Z[x]/(xN − 1). Then the centered norm of a(x) is de-
fined by

‖ a(x) ‖2 =

N−1
∑

i=0

(ai − µa)2 =

N−1
∑

i=0

ai
2 − 1

N
(

N−1
∑

i=0

ai)
2

, where µa =
1

N

N−1
∑

i=0

ai is the average of the coefficients

of a(x).

The centered norm of an n-tuple (a1, a2, · · · , an) with
a1, a2, · · · , an ∈ R can be defined by this formula

(‖ (a1, a2, · · · , an) ‖)2 =‖ a1 ‖2 + ‖ a2 ‖2 + · · ·+ ‖ an ‖2 .

The original NTRUSign digital signature scheme works
as follows:

System Parameters

1. N : a (prime) dimension.

2. q: a modulus, df , dg: key size parameters.

3. NormBound: a bound parameter of verification.

Key Generation A signer creates his public key h
and the corresponding private key {(f, g), (F,G)} as
follows:

1. Choose binary polynomials f and g with df 1’s
and dg 1’s, respectively.

2. Compute the public key h ≡ f−1 ∗ g (mod q).

3. Compute small polynomials (F,G) satisfying f ∗
G− g ∗ F = q.

Signing Step A signer generates his signature s on
the digital document D as follows:

1. Obtain the polynomials (m1,m2) mod q for the
document D by using the public hash function.

2. Write

G ∗m1 − F ∗m2 = A + q ∗B,

−g ∗m1 + f ∗m2 = a + q ∗ b,

where A and a have coefficients between −q/2
and q/2.

3. The signature on D is a vector (s, t) ∈ LNT
h ,

which is very close to m = (m1,m2).

s ≡ f ∗B + F ∗ b (mod q)

t ≡ g ∗B + G ∗ b (mod q).

4. The polynomial s is the signature on the digital
document D for the public key h.



Verification Step For a given signature s and doc-
ument D, a verifier should do the following:

1. Hash the document D to recreate (m1,m2).

2. With the signature s and public key h, compute
the corresponding polynomial

t ≡ s ∗ h (mod q).

(Note that (s, t) is a point in the NTRU lattice
LNT

h .)

3. Compute the distance from (s, t) to (m1,m2) and
verify that it is smaller than the NormBound
parameter. In other words, check that

‖ s−m1 ‖2 + ‖ t−m2 ‖2 ≤ Normbound2,

where the norm( ‖ · ‖) is a centered norm.

Note that the signature on D is a vector (s, t) in
NTRU lattice LNT

h , which is very close to m. To solve
an approximately closest vector problem in the NTRU
lattice, a signer uses his secret “short basis” defined as
below:

Definition 2 A basis {(f, g), (F,G)} is called a short
basis in LNT

h if

‖ f ‖, ‖ g ‖= O(
√

N), and ‖ F ‖, ‖ G ‖= O(N).

The signing process of NTRUSign may be explained
by the following matrix equation, which shows that a
signer is using his short basis {(f, g), (F,G)} to find
approximate solutions to the closest vector problem:

(

s t
)

=
(

B b
)

(

f g
F G

)

=

⌊

(

m1 m2

)

(

G/q −g/q
−F/q f/q

)⌉ (

f g
F G

)

=

⌊

(

m1 m2

)

(

f g
F G

)−1
⌉

(

f g
F G

)

A valid signature demonstrates that the signer knows
a lattice point that is within Normbound of the mes-
sage digest vector m. Clearly, the smaller that Normbound
is set, the more difficult it will be for an attacker, with-
out knowledge of the private key, to solve this problem.
The designers recommend that the suggested parame-
ters (N, q, df , dg, Normbound) = (251, 128, 73, 71, 300)
offers an equivalent security as 1,024 bit RSA [8].

3 Weakness in NTRUSign

In this section we describe that the NTRUSign is
strong existential forgeable, sometimes this notion is
called as malleable. Strong existential forgeability for
a given signature scheme means that one can create a
message-signature pair that has never been observed by
the signer [16]. A different signature for a once legiti-
mately signed message can be regarded as a forgery. In

practice, this forgery shows that the NTRUSign scheme
cannot be used for all kinds of applications. For exam-
ple, in electronic cash system, finding a second valid
signature for a bill should be impossible. Thus the
application area of this scheme is limited, because a
digital signature scheme is selected according to both
its security level and the context of use.

Now we will describe how we can generate a valid
signature different from a previous valid signature for
a given message. Remind that NTRUSign signature
scheme uses the centered norm in verification step. The
centered norm is quasi-multiplicative, that is, ‖ a(x) ∗
b(x) ‖≈‖ a(x) ‖ ∗ ‖ b(x) ‖ for randomly chosen poly-
nomials a(x) and b(x) in R, which was well discussed
in [9]. The properties of the centered norm will be em-
ployed to induce a new signature from a given signature
without knowing the private key.

The following lemma describes the centered norm
properties.

Lemma 1 Let R be a quotient polynomial ring R =
Z[x]/(xN − 1). Then

(i) In Rq = Zq[x]/(xN − 1), there exist exactly q poly-
nomials α(x) such that ‖ α(x) ‖= 0.

(ii) If ‖ α(x) ‖= 0, then ‖ α(x) ∗ β(x) ‖= 0 for every
polynomial β(x) ∈ R.

Proof.
(i) It is obvious that α0 = · · · = αN−1 for αi ∈

(−q/2, q/2] if and only if
∑N−1

i=0 (ai − µa)2 = 0 where

µa = 1
N

∑N−1
i=0 ai, namely ‖ a(x) ‖= 0.

(ii) From the result of (i), all coefficients of α are the
same, say α = (α0, α0, · · · , α0). Then, clearly the k-th

coefficient of α∗β is
∑N−1

i=0 (α0βk−i)+
∑N−1

i=k+1(α0βN+k−i)
= α0(β0 + · · · + βk + βk+1 + βN−1) = α0 ∗ β, and so
are the other coefficients of α ∗ β the same. Again by
applying to (i), we complete the proof of this lemma.

�

We call these q polynomials satisfying ‖ α(x) ‖= 0
annihilating polynomial. These annihilating polynomi-
als may be used to make the NTRUSign algorithm mal-
leable.

Hoffstein et al. argued that forgery of a signature in
NTRUSign is equivalent to the ability to solve an ap-
proximately closest vector problem in high dimension
for the class of NTRU lattices. It seems to be true if
we do not consider the stronger attack model. Histori-
cally, Goldwasser, Micali and Rivest [5] introduced the
notion of existential forgery against chosen-message at-
tacks for public key signature scheme. This notion has
become the de facto security definition for digital sig-
nature algorithm, against which all new signature al-
gorithms are measured. In this scenario, an adversary
with access to the public key of the scheme and to a
signing oracle, should not be able to forge a valid sig-
nature for some new message or for a message of his
choice(existential forgery and selective forgery, respec-
tively). An even stronger requirement called the non



malleability, or strong unforgeability, also forbids an
adversary to forge an additional signature for a mes-
sage which might already have been signed by the or-
acle [16]. We can see more detail security notions for
digital signature scheme and the relation between them
in [5, 14].

Now we will show that one can easily generate a
message-signature pair that has never been observed
by the signer. To create additional valid signatures we
use the following Remark and Lemma. Recall that all
coefficients of polynomials are reduced by modulo q.

Remark 1 Let α be an annihilating polynomial. Then
‖ r+α ‖≈‖ r ‖ for randomly chosen polynomial r ∈ R.

If both “reduced form” and “not reduced form” of
polynomial r + α are equal, then the centered norm
values of ‖ r ‖ and ‖ r + α ‖ are exactly the same.
The differences between ‖ r + α ‖ and ‖ r ‖ are caused
from only the gap failure. The concepts of gapping
and wrapping failure are presented in [15]. We have
implemented the above remark with the suggested pa-
rameters 1,000 times for each α by using Mathematica
4.2. It is clear that as the coefficients of annihilating
polynomial gets smaller, the probability of having the
same norm gets higher. When the coefficient of α is
±1 or ±2, our experiment shows that each probability
which two centered norm values are exactly the same
becomes 0.15 and 0.015 approximately. Figure 1 de-
scribes the distribution of differences between ‖ r+α ‖
and ‖ r ‖ for random polynomial r ∈ R, where the αi-
axis denotes the coefficient of annihilating polynomial.

We will see some results induced from the properties
of an annihilating polynomial. For any polynomial f =
(f0, f1, · · · , fN−1) ∈ R, V(f) denotes the sum of all
coefficients of f modulus q, that is,

V(f) = f(1) =

N−1
∑

i=0

fi (mod q) ∈ Zq. (1)

For any f ∈ R, the product f ∗ α can be presented
by V(f)α, where α is an annihilating polynomial (See
the proof of Lemma 1.).

From (1) it is trivial that V has the following prop-
erties:

Lemma 2 Let f and g be two polynomials in R.
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Figure 1: Differences between ‖ a + α ‖ and ‖ a ‖

(i) V(f)V(g) ≡ V(f ∗ g) (mod q).

(ii) V(f−1) ≡ V(f)
−1

(mod q) if f has an inverse in
Rq.

Assume that one chooses two polynomial pair (f, g),
where f has an inverse in Rq. If there exists somewhat
small integer α0 ∈ (−q/2, q/2] satisfying α0V(f)−1V(g)
(mod q) is also small, then we can know that both poly-
nomial α = (α0, α0, · · · , α0) and (f−1 ∗ g) ∗α are anni-
hilating polynomials with somewhat small coefficients
from Lemma 2.

Remark 2 In the suggested parameters (df , dg) = (73, 71)
given in [8], one has V(f) = −55 and V(g) = −57. In

this case one can choose α = 8
∑N−1

i=0 xi so that

h ∗ α (mod q) = V(h)α = V(f−1 ∗ g) ∗ α

= V(f)−1V(g) ∗ α

= −8

N−1
∑

i=0

xi.

For a given signature (s, t) ∈ LNT
h generated under

the suggested parameters, we take s′ = s + α (mod q),

where α = 8
∑N−1

i=0 xi. Then the corresponding signa-
ture pair t′ is

t′ = s′ ∗ h (mod q) = s ∗ h + α ∗ h (mod q)

= t− 8

N−1
∑

i=0

xi (mod q).

At this time, we can expect that both ‖ s−m1 ‖ and
‖ t−m2 ‖ are small. Moreover, it is plausible that the
small number of their coefficients are out of the range
(−64 + 8, 64 − 8]. Form these reasons, the new lattice

point (s′, t′) = (s + 8
∑N−1

i=0 xi, t − 8
∑N−1

i=0 xi) will be
another valid signature with high probability. Simply
speaking, if one has s − m1 without any coefficients
greater than 56 and t−m2 without any coefficients less
than −55, then one can have the following equation
exactly:

‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 = ‖ s−m1 ‖2 + ‖ t−m2 ‖2

≤ Normbound2,

which means (s′, t′) is always another valid signature.

A numerical experimental result shows that one has
much more chance to succeed in the proposed attack:
we examine a set P that consists of 128,000 elements
from Z128[x]/(x251 − 1) generated in such a way that
all coefficients are randomly chosen from normal distri-
bution with uniformly chosen means µ ∈ (−64, 64] and

a fixed standard deviation σ =
√

Normbound2/N ≈
18.9. For two sets P ′ = {s ∈ P | ‖ s ‖2 < 3002} and

P ′′ = {s ∈ P ′ | ‖ s + 8
∑N−1

i=0 xi ‖2 < 3002}, we ob-
tained the result that the set P ′ consists of 20,650 dis-
tinct elements and that P ′ and P ′′ coincide exactly.

The detailed result of our experiment is to be shown
in the full paper.



4 Repairing NTRUSign

In this section we present a simple way in order to
avoid the weakness in the NTRUSign signature scheme.
The strategy for repairing NTRUSign is to make the
signing transformation one-to-one correspondent on a
given secret key. It can be achieved by adding an anni-
hilating polynomial in the signing step. Our idea is to
make the top-coefficient (i.e., the coefficient of xN−1) of
the signature s obtained from the original NTRUSign
to be zero. If the distance between the new signature
s′ computed by this process and given point is not as
close as to the expected distance, then we simply add
the polynomial

∑N−1
i=0 xi to the signature s′ until it

becomes to a valid signature.
The repaired version of NTRUSign scheme is as fol-

lows:

Signing Signer generates his signature s′ on the dig-
ital document D

INPUT: private key {(f, g), (F,G)} and hashed mes-
sage (m1,m2)

OUTPUT: valid signature s′

1. Obtain the signature s from the original NTRUSign.

2. Set s′ ←− s− sN−1

∑N−1
i=0 xi (mod q).

3. While ‖ s′ −m1 ‖2+‖ t′ −m2 ‖2 > Normbound2

do the following:

3.1. Set s′ ←− s′ +
∑N−1

i=0 xi (mod q).

4. Return(s′).

Verifying Receiver verifies the signature s′

INPUT: signature s′ and sender’s public key h

OUTPUT: “Accept” or “reject”

1. Compute t′ = s′ ∗ h (mod q).

2. If ‖ s′ −m1 ‖2 + ‖ t′ −m2 ‖2 > Normbound2,
then return(“Reject”).

3. While s′N−1 6= 0:

3.1. Set s′ ←− s′ −∑N−1
i=0 xi (mod q).

3.2. If ‖ s′ −m1 ‖2+‖ t′ −m2 ‖2 ≤ Normbound2,
then return(“Reject”).

4. Return(“Accept”).

It is obvious that our modification does not degen-
erate the security of the original NTRUSign scheme.
Actually two problems based on original NTRUSign
and repaired NTRUSign are computationally equiva-
lent. Although our proposed attack cannot be ap-
plied for repaired NTRUSign anymore, we do not know
whether the repaired version of NTRUSign is non-malleable
or not yet. As the future work, it remains as our task
to prove that the repaired NTRUSign is non-malleable
signature scheme.

5 Concluding Remarks

In this paper we described a weakness of NTRUSign
digital signature scheme that can cause significant prob-
lems in some real applications if one is not aware of it.
We showed that NTRUSign signature scheme is not se-
cure in terms of strongly existential forgeable, thus it is
malleable. This notion allows an adversary to find new
signatures for a message of his choice, given a signature
for this message. This forgery requires a specific poly-
nomial with small coefficient satisfying its norm value
equal to zero. Even if this forgery does not admit an
adversary to change the message, NTRUSign scheme
cannot be used for all applications. We also proposed
a simple technique to repair the scheme.
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