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Abstract. The advantage of ID-based system is the simplification of
key distribution and certification management; a user can directly use
his identity as his public key instead of an arbitrary number, thus at the
same time he can prove his identity rather than providing a certificate
from CA. Now a revocable blind signature is becoming more practical;
because a complete anonymity can be abused in real world applications.
For instance the perfect crime concern in e-cash system. The “magic ink”
signature provides a revocable anonymity solution, which means that the
signer has some capability to revoke a blind signature to investigate the
original user in case of abnormal activity, while keeping the legal user’s
privacy anonymous. A single signer in “magic ink” signature can easily
trace the original user of the message without any limitation; this scheme
can’t satisfy anonymity for a legal user, so we can use n signers to sign
the message through a (n, n) threshold secret sharing to distribute the
commitment during the signature procedure, single signer’s revocability
is limited, only under the agreement and cooperation of a set of n singers,
the user’s identity can be discovered. In this paper an ID-based (n, n)
threshold “magic ink” signature is proposed along with its analysis and
application.

1 Introduction

Blind signature introduced by Chaum [6] can be user to protect the privacy

such as anonymity of user in the electronic cash system. However, unconditional

anonymity facilitates some crimes such as perfect crime, illegal purchasing, ect

[17]. In order to solve these problems, some technologies for anonymity revocation

were proposed, such as “fair blind signature” [14], indirect discourse proofs [7],

“magic ink” signature [1, 11], group signature [18, 21], and so on.

Physically “magic ink” signature can be described as follows: a user writes

some message on an envelope using magic ink, simultaneously this message also

is copied on a blank paper through carbon paper in this envelope, then the signer

writes down his signature on the envelope, this signature also will appear on the

inside paper, finally the signer and user keep the envelop and signed inside pa-

per respectively. Normally the message is invisible on the envelop, but in some
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case(criminal activity) signer can discover this invisible message. The “magic

ink” signature provides a revocable anonymity solution, which means that the

signer has some capability of revealing a blind signature to investigate the ab-

normal activity, whilst keeps the legal action anonymous. The first “magic ink”

signature [11] is based on digital signature standard; this scheme approaches a

revocable anonymity from a set of distributed servers through threshold cryp-

tosystem instead of the enrollment of the trust third party in “fair blind signa-

ture”. It achieves more security and availability.

In traditional CA-based public key cryptosystem, each participant should

provide a digital certificate to prove the validity of his identity and public key;

this procedure obviously exhausts huge system resource. In 1984, Shamir pro-

posed an ID-based encryption and signature scheme [16], which directly utilizes

user’s identity as his public key. So this scheme could simplify the key distribu-

tion and certification management process.

Bilinear parings namely the Weil pairing and Tate pairing of algebraic curves

were first used to analyze the discrete logarithm problem in cryptography, such

as MOV attack [13] and FR attack [8]. Recently, the bilinear pairings have beeb

found various applications in cryptography, more precisely, they can be need to

constructed ID-based cryptographic schemes [3, 4, 12, 19, 5, 10, 15, 20].

In this paper we proposed an ID-based distributed “magic ink” signature

scheme by combining a distributed “magic ink” signature with an ID-based

signature from bilinear pairing. This scheme can be used in some revocable e-

cash system or credential certificates applications. In case of a single signer can

easily trace the original user of the message without any limitation; we can use a

(n, n) threshold to share the commitment during the signature procedure. Only

under the agreement and cooperation of n signers, the original user can be found.

This paper is organized as follows: some properties of bilinear pairing is in-

troduced in Section 2. We then discuss the structure of this scheme in Section

3. In Section 4 we describe the basic idea of this signature. Our main ID-based

distributed “magic ink” signature is presented in Section 5. During Section 6 we

analyze the correctness, unforgeable security, robustness, efficiency and compar-

ison of our scheme. We dedicate some application which can be established on

this scheme in Section 7. Conclusion is given in Section 8.

2 Some Properties of Bilinear Pairing

We assume G1 and G2 are two cyclic groups of order q for a large prime q, G1 is

an additive group and G2 is a multiplicative group, A map is a bilinear pairing,

if it satisfies following properties:

1. Bilinear: e(P1+P2, Q) = e(P1, Q)e(P2, Q) and e(P,Q1+Q2) = e(P,Q1)e(P,Q2).
2. Non-degenerate: there exits P,Q ∈ G1, e(P,Q) 6= 1.
3. Computability: If P,Q ∈ G1, there exists an efficient algorithm to compute

e(P,Q).
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There are some arithmetic hard problems in G1 , as follows:

1. Discrete Logarithm Problem (DLP): It means that if there are two groups

Q and P , it is difficult to find an integer n, which can satisfy P = nQ.

2. Decision Diffle-Hellman Problem (DDHP): Given P , aP , bP , cP , and a, b, c ∈

Z∗

q , determine whether c ≡ ab mod q.

3. Computational Diffle-Hellman Problem (CDHP): Given P ,aP ,bP ,a, b ∈ Z∗

q ,

computes abP .

4. Gap Diffle-Hellman Problem(GDHP): A class of problems, when the DDHP

is easy, but the CDHP is hard.

We let CDHP and DLP are intractable in this paper, that means there is no

polynomial time algorithm to solve CDHP and DLP with nonnegligible proba-

bility. We call a group G a Gap Diffle-Hellman group, when the DDHP is easy

and CDHP is hard on that group. Such group can be found on supersingular

elliptic curves or hyperelliptic curves over finite field, and the bilinear pairing

can be derived from the Weil or Tate pairing.

3 Structure

3.1 Computation and Communication

We assume: there are a set of n signers and k receivers, all of them are polynomial-

time randomized Turing machines. In communication model, we also assume:

any receiver can build point to point communication channel with each signer

through a secure channel. An adversary can corrupt up to n − 1 among the n

signers.

3.2 ID-based “Magic Ink” Signature

An ID-based “magic ink” signature scheme consists of three parties and five

steps, which is described as follows:

- Three parties are Trust Authority(TA), n signers and receiver.
- Setup is a randomized algorithm, which generates system parameters and

a master key by inputting a security parameter to TA.
- In Extract step, TA inputs system parameters, master key and an arbitrary

ID ∈ {0, 1}∗, and outputs a private key SID. Here ID is the signer’s identity,

which is treated as the signer’s public key.
- Signature is a signature generation protocol engaged by receiver and a set

of n signers, signers output a blind signature, and receiver finally produces

a valid or failed signature. Signers record a signature-view variant in their

database to indicate each blind signature.
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- Verification is a randomized algorithm that takes message m with its signa-

ture and signers’ identities as an input, and outputs acceptation or rejection.

- Tracing occurs in case of illegal activities, signers will search their database

of signature-view invariant to find a value, which can be linked to the valid

signature. From this value, signers can find the original signature receiver.

4 Basic Idea of ID-Based “Magic Ink” Signature(Single
Signer)

ID-based “magic ink” signature can be regarded as a combination of ID-based

signature with a revocable blind signature. We will describe the basic idea of

ID-based “magic ink” signature from a single signer. First set G1 to be a cyclic

additive group and G2 to be a multiplicative group, both of groups have a same

prime order q, our scheme is built on Gap Diffle-Hellman Group . We view the

bilinear map as e : G1 × G1 → G2.

At the beginning of this protocol, the TA operates Setup and Extract, dur-

ing the generation of private key of the signer, we can use n TA’s with a (n, n)

threshold security sharing to share the master key, in order to control the power

of TA.

Setup:

Let P be a generator of G1, randomly choose a number s ∈ Z∗

q as a master

key of trust authority, set Ppub = sP . Construct two cryptographic hash func-

tions H : {0, 1}∗ → Zq and H1 : {0, 1}∗ → G1. Then the system parameters are

: {q, P, Ppub, G1, G2, e,H,H1}.

Extract:

Assume that the signer’s identity is his ID, we can calculate the public key

as QID = H1(ID), and the private key of signer is SID = sQID.

Signature:

– The signer randomly chooses a number r ∈ Z∗

q , and computers R = rP , then

sends R to the receiver.

– A number a ∈ Z∗

q will be chosen randomly by receiver as a blind factor,

then receiver computes t = e(aPpub, R) and c = H(m, t) with his message

m, sends blinded c by computing c′ = a−1c mod q to signer.

– After receiving c′, signer uses his private key SID to produce the blind sig-

nature by computing S′ = c′SID + rPpub, and sends the S′ to the receiver.

– S′ is unblinded by factor a, then the final signature of message m is (S, t,m),

where S = S′a.

The protocol is showed in Fig.1.

Verification:
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Receiver Signer

r ∈R Z∗

q

R R = rP
�

a ∈R Z∗

q

t = e(aPpub, R)

c = H(m, t)

c′ = a−1c (mod q) c′
-

S′ = c′SID + rPpub

�
S′

S = S′a

Fig. 1. ID-based “magic ink” signature protocol

Receiver can verify whether the signature is valid or not by using signer’s

public key to check:

e(S, P ) = e(QID, Ppub)
H(m,t)t.

Receiver accepts the signature, if the above equation holds.

Tracing:

Let (c−1S) identifies a valid signature (m, t, S), and (c′, S′) can be viewed by

the signer during the signature session. In each signature, we have c′−1S′ = c−1S,

since:

c′−1S′ = c−1a × Sa−1 = c−1S.

From a valid signature (m, t, S), signer can easily calculate c−1S, here c =

H(m, t). So if any illegal receiver needs to be discovered, signer can compare

the value of c−1S with the database of signature-view invariant. If signer can

find the same value in the database, the original receiver can be identified.

5 ID-Based Distributed “Magic Ink” Signature(Multiple
Signers)

It is trivial that the case of single signer can’t satisfy the privacy requirement

because single signer can trace the user as his will. Therefore, we provide a (n, n)

threshold scheme by modifying our previous construction in a single signer case,

which means a signer will be replaced by n signers in a way that key generation
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and signature generation require collaboration of at least n singers, whilst no

subgroup of less than n participants can forge a signature.

We set n signers to individually sign the message through using their own

private keys and send it to user through point-to-point communication with

receiver, and receiver combines those signatures to an ID-based “magic ink”

signature. The advantage of ID-Based distributed “magic ink” signature is that

it can hide the signature-view invariant to each signer, also it satisfies the original

ID-based blind signature requirement. So without the agreement and cooperation

of n signers, the signature can’t be revoked. The protocol of ID-based distributed

“magic ink” signature is described as follow:

Set G1 as a cyclic additive group and G2 as a multiplicative group, both of

groups have a same prime order q. We view the bilinear group as e : G1 ×G1 →

G2.

Setup:

Let P be a generator of G1, randomly choose a number s ∈ Z∗

q as a master

key of trust party, set Ppub = sP . Construct two cryptographic hash functions

H : {0, 1}∗ → Zq and H1 : {0, 1}∗ → G1. Then the system parameters are

: {q, P, Ppub, G1, G2, e,H,H1}.

Extract:

Assume each signer’s identity is IDi. We can express the public key of each

signer as: QIDi = H1(IDi), and the private key of signer is SIDi = sQIDi, so

the public key of the scheme is QID =
∑n

i=1 QIDi, i = 1, 2...n.

Signature Session:

– n signers obtain a (n, n) secret sharing (r1, r2, . . . rn) of a randomly chosen

number r ∈ Z∗

q by letting r =
∑n

i=1 ri, each signer computes Ri = riP , and

sends Ri to receiver.
– Receiver computes R =

∑n

i=1 Ri, and randomly chooses a number a ∈ Z∗

q .

Receiver computes t = e(aPpub, R) and c = H(m, t) with the message m,

and sends blinded c by computing c′ = a−1c mod q to each signer.
– Each signer individually generates the signature S ′

i = c′SIDi + riPpub, and

secretly sends it to receiver.
– After receiving all the signature S ′

i, receiver computes S′ =
∑n

i=1 S′

i =

c′
∑n

i=1 SIDi +
∑n

i=1 riPpub. He then unblinds S′ by computing S = S′a,

and the (S, t,m) will be the valid ID-based distributed “magic ink” signa-

ture on message m.

Fig.2 shows the protocol.

Verification:

The verification is similar to the previous single signer verification, receiver

uses public key QID to check whether it is a valid signature from equation:

e(S, P ) = e(QID, Ppub)
H(m,t)t.
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Receiver Signer i

ri ∈R Z∗

q

Ri

Ri = riP
�R =

∑n

i=1
Ri

a ∈R Z∗

q

t = e(aPpub, R)

c = H(m, t)

c′ = a−1c (mod q)
c′

-

S′

i = c′SIDi + riPpub

�

S′

i

S′ =
∑n

i=1
S′

i

S = S′a

Fig. 2. ID-Based Distributed “Magic Ink” signature protocol

Tracing:

Since S′ is blind to each signer, and each S ′

i is secretly sent to receiver, so

any signer can’t know S′ without cooperating with another n − 1 signers. Only

n signers work together to compute S ′ from S′ =
∑n

i=1 S′

i, then the signature-

view invariant will be revoked. Through this value signers can compare with the

signature to trace the original signature receiver.

6 Analysis of ID-based distributed “magic ink” signature

6.1 Correctness

This scheme is a valid signature; the proof of verification equation is as follow:

e(S, P ) = e(S′a, P ) = e(

n∑

i=1

S′

ia, P )

=

n∏

i=1

e(ac′SIDi + ariPpub, P )

=

n∏

i=1

e(cSIDi, P )

n∏

i=1

e(ariPpub, P )

= e(SID, P )c

n∏

i=1

e(aPpub, P )ri
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= e(sQID, P )c

n∏

i=1

e(aPpub, riP )

= e(sQID, P )c

n∏

i=1

e(aPpub, Ri)

= e(sQID, P )ce(aPpub, R) = e(QID, sP )ct

= e(QID, Ppub)
H(m,t)t

6.2 Blindness

This scheme basically can achieve blindness requirement, because the message M

sent to signer will be blinded previously by a randomly chosen integer a ∈ Z∗

q ,

and the signer just signs the blinded message c′. After receiving the blinded

signature, the user can unblind this signature by using blind factor a and get

the valid signature, but the signer can’t find any relationship between S ′ and S,

signer just has a probability of 1/q to correctly guess the unblinded signature,

so we can say this scheme is blind.

6.3 Revocable Anonymity

A valid magic ink signature means that the scheme should be revocable anonymity;

this scheme also supports such function. The signer receives c′ and S′ during each

signature session, he can pre-compute the value of c′−1S′ and store each value

into a specific database. When he needs to trace the user, he can compute the

value of c−1S from the signature (S, t,m). Since the signature view invariant,

signature can search this value in database to find the original user. So the revo-

cable property is maintained. The tracing mechanism of distributed magic ink

should be cooperated by n signers, because each signer can’t get S ′ by himself.

The revocability of signers can be controlled

6.4 Unforgeable Security

We consider the following fame: assume that an adversary can cooperate n − 1

signers without loss of generality. Let the identities of these n − 1 signer are

QIDi
, i = 1, 2...n. So adversary can get SIDi

to compute S′

i. If he can compute

SIDn
, he can forge a valid ID-based distributed “magic ink” signature. However

it is equivalent to solve CDHP in G1 for computing sH(IDn) with sP and

H(IDn).

6.5 Robustness

If the signature can’t pass the verification, there exists some dishonest signers.

Since each signer should send his partial signature S ′

i to the receiver, receiver can
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check each signature by verifying whether e(Si, P ) = e(QIDi, Ppub)
H(m,t)e(aPpub, Ri),

here Si = S′

ia. If one of the signatures doesn’t pass, we can declare that this

signer made some mistake or cheating.

6.6 Comparison and Efficiency

Jakobsson first proposed a distributed “magic ink” signature [11] in 1997. The

comparison with our proposed scheme is showed in Table 1 . We denote DMIS

DMIS IDDMIS

Number of costs(reciever) (2n + 1)E+ 4m+ 2I 1e+ 2M+ 1D+ (2n −
1)A

Number of cost(each signer) 2E+ 3m 3M+ 1A

Private key size(bit) 160bit 161bit

Public key size(bit) 1024bit 161bit

Threshold (n, t) (n, n)

Based Problem DLP CDHP
Table 1. Comparison with Distributed “Magic Ink” Signature

the distributed “magic ink” signature [11], IDDMIS the ID-based distributed

“magic ink” signature, M the cost of multiplication over G2, D the cost of

Division over a finite field, A the point addition over G2, e the cost of weil

pairing computation in G1, m the cost of multiplication over a finite field, E the

cost of exponent over a finite field, and I the cost of inverse over a finite field.

Compared with IDDMIS, The advantages of our protocol are described as

follows:

– Due to the ID-based signature, n signers can directly use their identities such

as an e-mail address related with their unique information instead of a cer-

tificate issued by Certification Authority. So it simplifies the key distribution

and management in our scheme.
– We compare the computation costs of receiver’s side between two schemes.

we can find that if n, which denotes the number of distributed signers, is

not less than 2, the computational costs in user side of our scheme is lower

than previous scheme. If the system use a mount of distributed signers, our

scheme will be more efficient as the number of n increases. For example,

according to [2], on PIII 1 GHz one multiplication over a finite field costs

0.006 milliseconds, When n=20, in previous scheme each receiver takes 197

milliseconds, however our protocol for each receiver takes 25 milliseconds.

7 Application

Unconditional anonymity may facilitates perfect crimes such as money laun-

dering, blackmailing, etc. So recently a revocable e-cash system is desirable in
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practical use, that is the anonymity of the user is revocable in some urgent case.

Our ID-based distributed “magic ink” signature scheme also can be used in a

revocable e-cash system, we can treat bank as signers, and buyer as a receiver,

during the withdrawal step, buyer first randomly chooses a message m as his

e-coin, and gets the valid ID-based distributed “magic ink” signature to his coin

from bank, bank assigns n different parties to sign this coin and as the same

time stores each part of signature-view variant to their database. During pay-

ment step, vendor simply verifies whether the coin is valid or not by checking

bank’s signature. If the coin is valid, a vendor will deposit it to bank. When

bank detects some illegal activities such as blackmail or money laundering, he

can search the database of signature-view invariant to find the corresponding

user. Also if bank cooperates with user, he can act coin tracing to calculate the

final coin and signature. But because of the use of distributed signature, the

revocability of bank is limited, Only under the cooperation of all n parties, bank

can get the signature-view invariant. In some previous fair e-cash system scheme,

a trust third party(TTP) was used to send the pseudonym in signature put by

user during the signature procedure to bank, in order to help bank to make

tracing, but our scheme doesn’t need the enrollment of the TTP. It obviously

reduces the protocol complexity and saves the system resource.

8 Conclusion

In this paper, we proposed an ID-based distributed “magic ink”s signature

scheme. Our scheme combine the advantages of ID-based signature and tradi-

tional “magic ink” signature scheme, which can be used for designing revocable

anonymity e-cash system without TTP. A disadvantage of our scheme is (n, n)

threshold, so it lacks flexibility. Since it seems no (n, t) threshold ID-based sig-

nature until now, we will design a (n, t) threshold to improve the efficiency and

availability in the future works.
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