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Abstract. Bid-rigging is a dangerous attack in electronic auction. Abe
and Suzuki firstly introduced the idea of receipt-free to prevent this at-
tack. In this paper we point out that Abe and Suzuki’s scheme only
provides receipt-freeness for losing bidders. We argue that it is more
important to provide receipt-freeness for winners and propose a new
receipt-free sealed bid auction scheme using the homomorphic encryp-
tion technique. In contrast to Abe and Suzuki’s scheme, our scheme sat-
isfies privacy, correctness, public verifiability and receipt-freeness for all
bidders. Also, our scheme is not based on threshold trust model but three-
party trust model, so it is more suitable for real-life auction. Furthermore,
we extend our scheme to M + 1-st price receipt-free auction.
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1 Introduction

Auction has become a major phenomenon of electronic commence in the recent
years. The most common auctions are English auction, Dutch auction and Sealed
bid auction. In the former two auctions, the communication cost is high and
the bidder information will be revealed after the auction is finished. Though
the sealed bid auction can be finished in one round communication, it does
not support the optional distribution of the goods [11]. Nobel Prize winner,
economist Vickrey presented a second-price auction: the bidder with the highest
price wins, but he only pays the second-price [25]. Vickrey auction is celebrated
in economics for having the property of incentive compatibility, i.e., the dominant
strategy for each bidder is always to bid his true value. However, it is rarely used
in practice for some crucial weakness [17]. M + 1-st price auction is a type of
sealed-bid auction for selling M units of a single kind of goods. In this auction,
M highest bidders win and only pay M + 1-st winning price. Vickrey auction
can be regarded as a special case of M + 1-st price auction for M = 1. Wurman
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[26] proved that M + 1-st price auction also satisfies the property of incentive
compatibility.

Sakurai et al. [22] firstly pointed out there exists the problem of bid-rigging
in the electronic auction, i.e., coercer/buyer orders other bidders to bid the price
he specifies to control the winning price. For instance, the coercer/buyer orders
other bidders (victims) to bid very low prices, then can win the auction at an
unreasonably low price. Hence, if bid-rigging occurs, the auction fails to establish
the appropriate price, so it is important to prevent bid-rigging. Sakurai et al.
presented an anonymous auction protocol based on a new convertible group
signature scheme to hide the identity of the winner. However, it does not solve
the bid-rigging essentially. Recently, Abe and Suzuki [2] introduced the idea of
receipt-free to prevent bid-rigging in the auction protocol.1 They also proposed
a receipt-free sealed-bid auction scheme under the assumption of bidding booth
and a one-way untappable channel. However, the scheme is based on threshold
trust model, i.e., a major fraction of auctions are assumed to be honest, which is
not suitable for many real life electronic auctions [5, 17, 18]. Also, it is not suit
for M + 1-st price auction.

Moreover, in Abe and Suzuki’s scheme, all auctioneers together recover the
secret seeds of each bidder to determine the winning price and the winners, that
is, the secret identity number j of the winners is revealed to all auctioneers.
Therefore a dishonest auctioneer may tell this information to the coercer/buyer.
The coercer/buyer can know all victims’ secret identity number beforehand. If
the winner is one of the victims he ordered, the coercer/buyer will punish the
winner. Therefore, the scheme only provides the receipt-freeness for losing bid-
ders. We argue that it is more important to provide receipt-freeness for winners
in electronic auctions. The aim of a coercer/buyer is to win the auction and the
losers do not affect the result of the auction. So, if the victim is not the winner,
the coercer/buyer never care whether the victim cheats him or not. However, if a
bidder violates the rule of coercer/buyer and wins the auction, the coercer/buyer
will be sure to punish the bidder for he cannot get the auction item.

In this paper, we propose a new receipt-free sealed bid auction scheme based
on homomorphic encryption technique. In contrast to Abe and Suzuki’s scheme,
our scheme is not based on threshold trust model but three-party trust model [18].
Our scheme satisfies the properties of secrecy, correctness, public verifiability and
receipt-freeness for all bidders. Furthermore, we present receipt-free M + 1-st
price auction.

The rest of the paper is organized as follows: The next section gives some
properties and security requirements of an electronic auction. Section 3 proposes
the receipt-free sealed bid auction scheme. Section 4 presents the receipt-free
M +1-st auction scheme. In Section 5, the security and efficiency analysis about
our proposed auction scheme are presented. Section 6 concludes this paper.

1 The concept of receipt-free is firstly introduced by Benaloh and Tuinstra [4] to solve
the misbehaver of “vote buying” or “coercion” in the electronic voting. There are
plenty of researches on receipt-freeness in the electronic voting [12, 19, 21].
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1.1 Related Works

There are plenty of works on the sealed bid (highest price) auction and Vickrey
auction. Franklin and Reiter [10] presented a protocol for implementing a sealed-
bid auction. Their solution is focused on using a cryptographic technique to
provide protections to monetary bids, such as digital money. In their protocol,
auctioneers use atomic multicast to communicate with each other, which is a
bottleneck in a large system. Also the protocol has the disadvantage of revealing
the bids after the auction is finished. Kikuchi et al. [11] proposed a protocol for
a sealed-bid auction based on the Shamir’s secret sharing scheme. The scheme
enjoys the privacy of the bids, but it does not guarantee that the winning bidder
will pay for the bid item. These schemes are not well suited for handing tie bids,
i.e., when two or more bidders happen to submit the same winning bid [20]. If
tie-bidding occurs, the schemes will not specify who the winners are, or even
how many winners there are. Also, both of the schemes distribute the trust onto
multi auctioneers. Recently, Cachin [6] proposed an auction scheme involving two
auction servers, but requiring bidders to contact just a single server. Lipmaa et
al. [17] proposed a secure Vickrey auction without threshold trust.

The M +1-st price auction is a type of sealed-bid auction for selling M units
of a single kind of item. Due to its attractive property of incentive compatibility,
there are many works on M + 1-st price auction [2, 5, 14]. Kikuchi [14] proposed
an M+1-st price auction using homomorphic encryption. Brandt [5] proposed an
M+1-st price auction where bidders compute the result by themselves. However,
there is no receipt-free M + 1-st price auction to the best of our knowledge.

1.2 Trust Model

There are numerous researches on electronic auction in recent years. Based on
the trust model, the researches can be classified into the following cases:

Threshold Trust Model
There are m auctioneers in threshold trust model, out of which a fraction (e.g.

more than m/3 or m/2) are assumed to be trustworthy. The auctioneers jointly
compute the winning price by using inefficient techniques of secure multiparty
function evaluation [18]. Some researchers claimed that the threshold trust model
is not suitable for real-life electronic auctions [5, 17, 18, 23].

Three-party Trust Model
A new third-party is introduced in this trust model. The third-party is not

a fully trusted party but assumed not to collude with the auctioneer [17, 18] or
other parties [3, 6]. Also, the third-party is not required to interact with bidders
and just generates the program for computing the result of the auction.

No Auctioneers Trust Model
Brandt [5] introduced the concept of bidder-resolved auctions, which dis-

tribute the trust onto all of the bidders. Unless all involved parties collude, no
information of the bids will be revealed. It is a reasonable assumption that all
bidders will never share their information simultaneously due to competition
among them. A drawback of this model is low efficiency.
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2 Properties and Security Requirements of Auction

In this section, we briefly describe the properties and security requirements of
the electronic auction.

2.1 Properties

In this paper, we focus on sealed-bid auctions: bids are keep secret during the
bidding phase. In the bidding phase, the bidders sends their sealed bidding price.
In the opening phase, the auctioneer (or with a third party) determines the
winning price according to a predetermined auction rule.

– Bidding: The auctioneer advertises the auction and calls the bidders to
bid for the auction item. Each bidder decides his bidding price and sends
the sealed price (better in an “encrypted” manner) to the auctioneer. The
auctioneer cannot recover the information about the bids.

– Opening: After all bidders have sent their bidding price, the auctioneer
determines the winning price and finds the bidder who bids the highest
price. The information of the loser’s identity and bidding price should not
be revealed even after the auction. Furthermore, it is crucial to protect the
identity of the winners in receipt-free auction. Otherwise, a coercer/buyer
will punish the winners who do not bid the specified price.

– Trading: The winner buys the auction item with a certain price according
to the auction rule. If the winner wants to repudiate his price, the auctioneer
(or collaborating with other entities) can identity the winner.

2.2 Security Requirements

– Privacy : No information of the bids and the corresponding bidder’s identity
is revealed during and after the auction. The only information to be revealed
is the winning price.

– Correctness: The winner and the winning price are determined correctly by
a certain auction rule.

– Public verifiability : Anyone can verify the correctness of the auction.
– Non-repudiation: No bidder can repudiate his bid. The winner must buy the

auction item with a certain price according the auction rule.
– Efficiency : The communication and computation in the auction should be

reasonable for implementation.
– Receipt-freeness: Anyone, even if the bidder himself, must not be able to

prove any information about the bidding price to any party.

3 Receipt-free Sealed Bid Auctions

In this section, we present receipt-free sealed bid auctions. Our scheme is not
based on threshold trust model but three-party trust model, where the entity
called Auction Issuer is not fully trusted but assume not collude with Auctioneer.
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3.1 Physical Assumptions

Bulletin Board: In Abe and Suzuki’s scheme, a physical assumption called
bidding booth is used: no one can control or watch the bidder in the bidding
booth. In our scheme, we will use a weaker assumption called bulletin board: any
one can read the information in the bulletin board, but no one can delete the
information. Also, only active bidders can append information in the designated
fields. We suppose the bidders who register with auction service are assigned
a secret identity number and the corresponding fields in the bulletin board. As
Stubblebine et al. [23] discussed, registration may incorporate an identity escrow
mechanism [15] so that the identity of a winner might only be revealed if he re-
pudiates his price.
Untappable Channel: This is a one-way communication channel and the
message through this channel remains secret for any third party. In our scheme,
we assume that two untappable channels from auctioneer issuer and auctioneer
to seller are separately available. Also, there exist untappable channels between
each bidder and seller. Therefore, the coercer/buyer can not know the commu-
nication between the bidders and the seller, i.e., he can not control the victims
during the bidding.

3.2 System Parameters

There are m bidders {Bi|i = 1, 2, · · · ,m}, a seller S, an auctioneer A and an
auctioneer issuer AI. Consider the subgroup Gq of order q of Z∗p , where p and
q|p − 1 are large primes and g is a generator of Gq. Let G1 and G2 be inde-
pendently selected generators of Gq which mean “I bid” and “I do not bid”,
respectively.

– A: chooses his secret key x1 and publishes his public key h1 = gx1 .
– AI: chooses his secret key x2 and publishes his public key h2 = gx2 .
– S: publishes a price list P = {j|j = 1, 2, · · · , n}.
– Bi: chooses his secret key xBi and publishes his public key hBi = gxBi . He

decides his bidding price pi ∈ P and computes the encrypted bidding vector

Ci,j = (xi,j , yi,j) =
{

(gaij , (h1h2)ai,j G1), if j = pi

(gaij , (h1h2)ai,j G2), if j 6= pi

where ai,j ∈R Zq, j = 1, 2, · · · , n.

3.3 High-level Description of the Scheme

For j = 1, 2, · · · , n, each bidder Bi firstly sends the bidding vector Ci,j to
the seller S. Then the seller S generates the receipt-free biding vector C∗i,j =
(x∗i,j , y

∗
i,j) = (xi,juj , yi,jvj), where uj = gβj and vj = (h1h2)βj . Meanwhile, the

seller S proves that uj and vj have the common exponent βj without exposing
the value of βj with the designated-verifier re-encryption knowledge proof [16].
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If the proof is valid, the bidder Bi and the seller S jointly generate a proof of
the validity of the bidding vector C∗i,j (see Appendix B and C). The bidder then
posts the bidding vector and the proof to the designated fields in the bulletin
board.

In the opening phase, the auctioneer and the Auctioneer Issuer together
determine the winning (highest) price with

∏m
i=1 C∗i,j for j = n, n − 1, · · · , 1.

Unless the auctioneer and the Auctioneer Issuer collude, the bidder’s privacy
will not be revealed.

3.4 Proposed Receipt-free Sealed Bid Auction Scheme

In our scheme, we do not rely on any trusted party. Assume that auctioneer
will never work in tandem with Auctioneer Issuer. Also, we argue that the seller
S will never collude with a coercer/buyer because the seller is benefit-collision
with the coercer/buyer. If the bid-rigging occurs, the auction fails to establish
the appropriate price and the coercer/buyer may win the auction at an unrea-
sonable low price. So, the bid-rigging is benefit to the coercer/buyer while the
seller suffers a great loss.

Bidding : Each bidder Bi generates the receipt-free biding vector C∗i,j with
the help of the seller S, where j = 1, 2, · · · , n. Also, they jointly generate the
proof of the validity of the bidding vector.

– Bi sends Ci,j = (xi,j , yi,j) to S, where j = 1, 2, · · · , n.
– For j = 1 to n, S chooses βj and then computes uj = gβj and vj = (h1h2)βj .

Let the receipt-free biding vector is C∗i,j = (x∗i,j , y
∗
i,j) = (xi,juj , yi,jvj).

– For j = 1 to n, S chooses γj , ζj , δj ∈R Zq and computes

(aj , bj) = (gγj , (h1h2)γj ), Dj = gζj h
δj

Bi

– S computes Hj = H(aj , bj , Dj , x
∗
i,j , y

∗
i,j), Uj = γj − βj(Hj + ζj). He then

sends (Hj , ζj , δj , Uj) and C∗i,j to Bi.
– Bi verifies the equation

Hj = H(gUj (x∗i,j/xi,j)Hj+ζj , (h1h2)Uj (y∗i,j/yi,j)Hj+ζj , gζj h
δj

Bi
, x∗i,j , y

∗
i,j)

holds.
– For j = 1 to n, Bi chooses wj , dj , rj ∈R Zq.
– If j = pi, Bi computes

a1,j = gwj , b1,j = (h1h2)wj , a2,j = grj x
dj

i,j , b2,j = (h1h2)rj (yi,j/G2)dj ;

else, Bi computes

a1,j = grj x
dj

i,j , b1,j = (h1h2)rj (yi,j/G1)dj , a2,j = gwj , b2,j = (h1h2)wj ;

– Bi sends (a1,j , b1,j) and (a2,j , b2,j) to S, where j = 1, 2, · · · , n.
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– For j = 1 to n, S chooses r1,j , r2,j , d1,j ∈ Zq

– S computes a′1,j = a1,jg
r1,j x

d1,j

i,j , b′1,j = b1,j(h1h2)r1,j (yi,j/G1)d1,j , a′2,j =

a2,jg
r2,j x

−d1,j

i,j , b′2,j = b2,j(h1h2)r2,j (yi,j/G2)−d1,j .
– S sends P1 = (a′1,j , b

′
1,j , a

′
2,j , b

′
2,j) to Bi

– Bi computes cj = H(a′1,j , b
′
1,j , a

′
2,j , b

′
2,j), ej = cj−dj , fj = wj−aijej , where

j = 1, 2, · · · , n.
– Let X = epi , epi = dpi , dpi = X; Y = fpi , fpi = rpi , rpi = Y ;
– For j = 1 to n, Bi sends (dj , rj), (ej , fj) to S.
– For j = 1 to n, S computes d′1,j = dj + d1,j , d′2,j = ej − d1,j , r′1,j =

rj +r1,j−d′1,jβj , r′2,j = fj +r2,j−d′2,jβj and sends P2 = (d′1,j , d
′
2,j , r

′
1,j , r

′
2,j)

to Bi.
– Bi computes cj = d′1,j + d′2,j and verifies

cj = H(gr′1,j (x∗i,j)
d′1,j , (h1h2)r′1,j (y∗i,j/G1)d′1,j , gr′2,j (x∗i,j)

d′2,j , (h1h2)r′2,j (y∗i,j/G2)d′2,j )

– Bi sends C∗i,j , P1 and P2 to the corresponding fields of the bulletin board.

Opening : AI and A compute the auction result.

– Let j = n, AI and A compute separately the final price vector

(Xj , Yj) = (
m∏

i=1

x∗i,j ,
m∏

i=1

y∗i,j)

They then separately publish Xx1
j , Xx2

j and provide a non-interactive zero-
knowledge proof of common exponent with their public key h1, h2. Let

Rj = Yj/Xx1+x2
j = G

lj
1 G

m−lj
2

where 0 ≤ lj ≤ m.3 If lj = 0, j = j − 1; else terminated.
– AI and A determine the first j which satisfies lj 6= 0, and the winning price

is the certain j, denote Pw.4

– AI and A publish the winning price Pw.

Trading : The winner proves that his bidding price is Pw and buys the auction
item. The winner can not repudiate his price, because S can identity the winner
with the help of AI and A.

– The winner Bi sends Ci,Pw to the seller.
– Since S knows all Ci,j for j = 1, 2, · · · , n, and i = 1, 2, · · · ,m, he can check the

validity of Ci,Pw easily. If Ci,Pw is valid, go to the next step; else, terminated.

3 From the result of [8], we know the complexity of computing lj is m1/2. Therefore,
m can not be very large, i.e., our scheme is unfit for very large scale auction

4 If lj > 1, the case of tie-bids occurred for there are lj winner candidates. However,
compare with the previous schemes, we know the numbers of winner candidates.
Then these candidates perform the next round of auction.

On the other hand, if n is chosen reasonable large, the bidders can submit the
price as his will so that the tie-bids can be avoided.
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– The winner provides a knowledge of common exponent to xi,Pw
and yi,Pw

/G1.
– If the winner wants to cancel the trading, AI and A compute (x∗i,Pw

)x1

and (x∗i,Pw
)x2 , respectively, where i = 1, 2, · · · , m. So, S can identity the

winner i which satisfies G1 = y∗i,Pw
/(x∗i,Pw

)x1+x2 . S sends the number of
the corresponding fields in the bulletin board to the auction service and the
service publics the identity of the winner. The winner must be answered for
his dishonest deeds, for example, the seller announces his name in the black
lists, or the down payment will be expropriated.

4 Receipt-free M + 1-st Price Auctions

In this section we will extend our scheme for M + 1-st price auction. The above
scheme cannot be extended to M + 1-st price directly because the winner must
prove his bidding price to S in the trading, i.e., S will know all the winners’
price.

Abe and Suzuki [1] proposed an M + 1-st price auction using homomorphic
encryption, which enjoys privacy, public verifiability. We will extend this for
receipt-free M + 1-st auction. Firstly, we introduce some definitions as [1].

Definition 1. Let Ea(M) denotes (ga, haM). Define

Ea(M)Eb(N) = (ga+b, ha+bMN)

and
(Ea(M))−1 = (g−a, h−aM−1)

Definition 2. Given a vector

A(j) = (Ea1(M), · · · , Eaj (M), Eaj+1(1), · · · , Ean(1))

the “differential” vector ∆A(j) of Aj is defined

∆A(j) = (Eb1(1), · · · , Ebj−1(1), Ebj (M), Ebj+1(1), · · · , Ebn(1))

and satisfies

A(j)n = ∆A(j)n, A(j)n−1 = ∆A(j)n−1A(j)n, · · · , A(j)1 = ∆A(j)1A(j)2

where A(j)i and ∆A(j)i denote the i-th components of vectors A(j) and ∆A(j),
respectively. We call A(j) the “integral” vector of ∆A(j). Therefore, given the
“differential” vector of a vector, the vector can be recovered efficiently, vice versa.

In general, we have

Definition 3. Given a vector

A(j) = (Ea1(M), · · · , Eaj (M), Eaj+1(N), · · · , Ean(N))
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the “differential” vector ∆A(j) of Aj is defined

∆A(j) = (Eb1(N), · · · , Ebj−1(N), Ebj
(M), Ebj+1(N), · · · , Ebn

(N))

and satisfies

A(j)n = ∆A(j)n, A(j)n−1 = ∆A(j)n−1A(j)n(A(j)n)−1 = ∆A(j)n−1

A(j)n−2 = ∆A(j)n−2A(j)n−1(A(j)n)−1, · · · , A(j)1 = ∆A(j)1A(j)2(A(j)n)−1

where A(j)i and ∆A(j)i denote the i-th components of vectors A(j) and ∆A(j),
respectively. Therefore, given the “differential” vector of a vector, the vector can
be recovered efficiently, vice versa.

In the M + 1-st price auction, the bidder Bi proves not only that each com-
ponent of the bidding vector suits the form of E(G1) or E(G2) but also that
there is only one component is the form of E(G1). Otherwise, a malicious bidder
will submit an invalid bidding vector to destroy the result of the auction.5

We will construct our receipt-free M + 1-st price auction scheme based on
Abe and Suzuki’s scheme:

Bidding : Each bidder Bi generates the receipt-free biding vector with the
help of the seller S. They then jointly generate the proof of validity of the bid-
ding vector. This is same with the first price sealed bid auction but adding a
knowledge proof of that there is only one component in the bidding vector is the
form of E(G1): the bidder Bi proves S that

∏n
j=1 xi,j and

∏n
j=1 yi,j/(G1G

n−1
2 )

have the same exponent.

Opening : AI and A compute the M + 1-st price.

– AI and A compute the “integral” vector C∗∗i,j = (x∗∗i,j , y
∗∗
i,j) of C∗i,j .

– Let j = 1, AI and A compute separately

(Xj , Yj) = (
m∏

i=1

x∗∗i,j ,
m∏

i=1

y∗∗i,j)

Then they publish Xx1
j and Xx2

j , respectively and provide a non-interactive
knowledge proof of common exponent with their public key h1 and h2. Let

Rj = Yj/Xx1+x2
j = G

lj
1 G

m−lj
2

where 0 ≤ lj ≤ m. If lj ≥ M + 1, j = j + 1; else terminated.

5 In the first price sealed bid auction, AI and A determine the first j which satisfies
lj 6= 0 for j = n, n − 1, · · · , 1, and the winning price is j. Then the protocol is
terminated. Therefore, the bidder Bi only proves that each component of the bidding
vector suits the form of E(G1) or E(G2) and the result of the auction will not be
affected.
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– AI and A determine the first j which satisfies lj−1 ≥ M + 1 and lj ≤ M ,
and the winning price is the certain j, denote Pw.

– AI and A publish the winning price Pw.

Trading : The winners prove that their bidding price is large than Pw and buys
one of the auction items at the price of Pw. The winners can not repudiate his
price, because S can identity them with the help of AI and A.

– The winner Bi sends Ci,j to the seller.
– The seller firstly check the validity of Ci,j and then compute the “integral”

vector vector C
′
i,j of Ci,j .

– The winner Bi provides a knowledge proof of common exponent to x
′
i,Pw

and
y
′
i,Pw

/G1.
– If some winners want to cancel the trading, for i = 1, 2, · · · ,m, AI and A

compute (x∗∗i,Pw
)x1 and (x∗∗i,Pw

)x2 , respectively and then send them to S via
the untappable channel.

– S can identity the winner i which satisfies G1 = y∗∗i,Pw
/(x∗∗i,Pw

)x1+x2 .

5 Analysis of the Proposed Scheme

5.1 Security

The proposed scheme satisfies the following properties:

Privacy. In the first price auction, only the highest price is computed. Unless
the auctioneer A and auctioneer issuer AI collude, the information of all losers
remains secret. In the M +1-st price auction, only the M +1-st price is revealed,
all other bidding price is secret. Also, the winner remains anonymous unless he
wants to repudiate his bidding.

Correctness. It is trivial. No malicious bidders can affect the result of the auc-
tion due to the interactive proof of knowledge, which ensures each bidder must
generate a valid bidding vector.

Public verifiability. Any entity can obtain the information to verify the cor-
rectness of the auction from the designated fields in the bulletin board.

Non-repudiation. With the help of both AI and A, S can know the designated
field of the winners in the bulletin board. So, the winner cannot repudiate his
bidding.

Receipt-freeness. In our scheme, Dj = gζj h
δj

Bi
is a trapdoor commitment (or

chameleon commitment). Since Bi knows his private key xBi , he can compute
ζ ′j and δ′j such that ζ ′j + xBiδ

′
j = ζj + xBiδj , i.e., he can freely open the com-

mitment as he wants and generate the re-encryption proof for any bidding. For
details, see appendix B. Also, we suppose that S will not collude with the co-
ercer/buyer. The coercer/buyer can not know the secret βj of S. Therefore, the
designated-verifier re-encryption proof can not be used to construct a receipt.
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5.2 Efficiency

In our schemes, the seller S is involved in the auction to help the bidders to
construct the receipt-free bidding. In the previous schemes, this work should
be done by the auctioneer. However, there is no special trusted parities in our
scheme and the auctioneer may collude with the coercer/buyer. We argue that
it is the seller mainly suffered from the bid-rigging so we only trust that the
seller will never collude with the coercer/buyer. The auctioneer is responsible for
advertising the auction, computing the result of the auction and identifying the
winner who wants to repudiate his price with the help of the auctioneer issuer.
The auctioneer will not be the bottleneck of the auction. Furthermore, the seller
should pay less for the auction since he shares some work of the auctioneer.

In the following we analyze the computation and communication of our
scheme (the first price auction). Let n and m represent the number of bidding
prices and bidders, respectively. Note that the computation and communication
as shown in the tables are for all bidders, not for each bidder.

Table 1 presents the communication patterns, the numbers of the rounds and
volume per round in the proposed scheme.

Table 2 shows the computation complexity of our scheme. It is easy to see
that the efficiency of the proposed scheme is comparable to that of Abe and
Suzuki’s scheme.

On the other hand, the complexity of each bidder is proportional to n and the
complexity of the seller is proportional to mn. Therefore, as we have mentioned
above, our scheme is unsuitable for large scale auction and the price range should
be reasonable large.

Pattern Round V olume

Bidding (bidding vector) Bi ↔ S 2m O(n)

Bidding (proof) Bi, S → Bulletin board m O(n)

Opening AI, A → Bulletin board at most m O(1)

Trading (normal case) Winner → S 1 O(1)

Trading (repudiation case) AI, A → S at most m O(1)

Table 1. The communication complexity of our scheme

Computational Complexity

One Bidder n encryptions and proofs

Seller mn verfications and proofs

A and AI at most 2mn multiplications, n decryptions and verifications

Table 2. The computation complexity of our scheme
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6 Conclusion

Bid-rigging is a dangerous attack in electronic auction. Abe and Suzuki firstly in-
troduced the idea of receipt-free auction to prevent this attack. We point out that
their auction scheme only provides receipt-freeness for losing bidders because the
secret identity number of the winner can be revealed to the coercer/buyer by
the dishonest auctioneers. Also, their scheme is not suitable for M + 1-st price
auction. We claim that it is more important to provide receipt-freeness for win-
ners in the electronic auction. In this paper we propose a new receipt-free sealed
bid auction scheme based on three-party trust model by using homomorphic
encryption technique, and we extend it suitable for M + 1-st price auction. Our
scheme provides privacy, correctness, public verifiability and receipt-freeness for
all bidders.
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Appendix A: Proof of Knowledge of Common Exponent

A prover with possession a secret number β ∈ Zq wants to show that logg u =
logh v while without exposing β, where u = gβ , v = hβ . Chaum and Pedersen
[9] firstly proposed an interactive protocol to solve this problem.

Let c = H(a, b, u, v), the above protocol could be easily converted into a
non-interactive proof of knowledge, where H() is one way hash function.
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Prover Verifier

ω ∈ Zq

Compute

a = gω, b = hω

(a, b) -
c ∈ Zq

¾ c
Compute

r = ω + cβ

r
-

Accept the proof if

gr = auc, hr = bvc

Fig. 1. Proof of knowledge of common exponent

Appendix B: Designated-Verifier Re-encryption Proof

Let (x, y) = (ga, ham) be an original encrypted ElGamal ciphertext for the
message m with a public key h = gs and (xf , yf ) = (xgw, yhw) be a re-encrypted
ciphertext by a prover. The prover wants to prove that xf/x and yf/y have the
same exponent w without exposing the value of w. Suppose hv = gsv be the
public key of the verifier.

Prover Verifier

k, r, t ∈ Zq

Compute

(a, b) = (gk, hk), d = grht
v

c = H(a, b, d, xf , yf ), u = k − w(c + r)

(c, r, t, u) -
Accept the proof if

c = H(gu(xf/x)c+r, hu(yf/y)c+r, grht
v, xf , yf )

Fig. 2. Designated-verifier re-encryption knowledge proof

The verifier can open the commitment d freely with his private key sv, i.e.,
he can compute another pair (r′, t′) such that r′+svt′ = r+svt holds. Therefore,
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the verifier can generate the re-encryption knowledge proof (c′, r′, t′, u′) for any
pair (x′, y′) of his choice, where (α, β, u′) are randomly chosen numbers, c′ =
H(gu′(xf/x′)α, hu′(yf/y′)α, gδ, xf , yf ), r′ = α− c′, t′ = (δ − r′)/sv.

Appendix C: Prove the Validity of the Bidding Vector

Each bidder and the seller jointly generate a proof of the validity of the bidding
vector.

Bidder Bi Seller

wj , dj , rj ∈R Zq

Compute

a1,j , b1,j , a2,j , b2,j

(a1,j , b1,j), (a2,j , b2,j)-
r1,j , r2,j , d1,j ∈ Zq

Compute

a′1,j , b′1,j , a′2,j , b′2,j

¾ (a′1,j , b
′
1,j), (a

′
2,j , b

′
2,j)

Compute

cj = H(a′1,j , b
′
1,j , a

′
2,j , b

′
2,j), ej = cj − dj , fj = wj − ai,jej

epi ↔ dpi ; fpi ↔ rpi

(dj , rj , ej , fj)- Compute

d′1,j = dj + d1,j

d′2,j = ej − d1,j

r′1,j = rj + r1,j − d′1,jβj

r′2,j = fj + r2,j − d′2,jβj

¾
(d′1,j , d

′
2,j , r

′
1,j , r

′
2,j)

Compute

cj = d′1,j + d′2,j

cj = H(gr′1,j (x∗i,j)
d′1,j , (h1h2)

r′1,j (y∗i,j/G1)
d′1,j , gr′2,j (x∗i,j)

d′2,j , (h1h2)
r′2,j (y∗i,j/G2)

d′2,j )

Fig. 3. Proof the validity of the bidding vector

In figure 3, if j = pi, let a1,j = gwj , b1,j = (h1h2)wj , a2,j = grj x
dj

i,j , b2,j =

(h1h2)r2(yi,j/G2)d2 ; else, let a1,j = grj x
dj

i,j , b1,j = (h1h2)rj (yi,j/G1)dj , a2,j =
gwj , b2,j = (h1h2)wj .

Correspondingly, let a′1,j = a1,jg
r1,j x

d1,j

i,j , b′1,j = b1,j(h1h2)r1,j (yi,j/G1)d1,j ,

a′2,j = a2,jg
r2,j x

−d1,j

i,j , b′2,j = b2,j(h1h2)r2,j (yi,j/G2)−d1,j .


