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Abstract— Threshold digital signature and blind signature are playing important roles in crypto-
graphy as well as in practical applications such as e-cash and e-voting systems, etc. In this paper, we
present a new threshold blind digital signature based on pairings without the third party. Our scheme
operates on Gap Deffie-Hellman (GDH) group, where Computational Diffie-Hellman problem is hard
but Decision Diffie-Hellman problem is easy. For example, we use pairings that could be built from
WEeil pairing or Tate pairing. We also analyze security and efficiency of the scheme.
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1 Introduction

Digital signature is an essential component in cryp-
tography. Depending on its application purpose, the
digital signatures can provide the required cryptographic
properties.

A threshold signature scheme distributes the signing
abilities to a group of signers such that a digital sig-
nature on a message cannot be produced by predeter-
mined numbers of signers. A blind signature scheme,
on the other hand, gives users ability to get a digi-
tal signature from a signer without revealing message
content. This property is very important for implemen-
ting e-voting, e-commerce, and e-payment systems, etc.
When a buyer purchases merchandize from a shop, the
buyer gets a bank’s signature on the payment given to
the shop and keeps secret what merchandize is from
the bank.

A threshold blind signature scheme combines a thres-
hold signature scheme and a blind one to take both
their properties. Therefore, a threshold blind signature
while giving user ability to get signature on a message
without revealing its content, still maintains the secret
key to be distributed among signers.

In this paper, we propose a threshold blind signa-
ture scheme based on pairings. The rest of the paper
is organized as follow. Some background on bilinear
pairings and relevant tools that we use in our proposed
scheme are introduced in Section 2. In Section 3, we de-
scribe our proposed threshold blind signature scheme.
Section 4 analyzes the security aspects of the proposed
scheme. In Section 5, we will evaluate performance of
our scheme and compare with other schemes as well.
Section 6 will finalize our work.
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2 Background and related work

2.1 Concepts of bilinear pairings

We summarize some concepts of bilinear pairings us-
ing similar notations in [16].

Let G; and G5 be additive and multiplicative groups
of the same prime order ¢, respectively. Let P is a
generator of Gy. Assume that the discrete logarithm
problems in both G; and Gy are hard. Let é : G; x
G1 — Go be a pairing which satisfies the following
properties:

1. Bilinear: é(aP,bP') = ¢(P, P")® for all P,P’' €
G1 and all a,b € Z.

2. Non-degenerate: 1f é(P,P') = 1 VP’ € Gy then
P=0.

3. Computable: There is an efficient algorithm to
compute é(P, P') for any P, P’ € G;.

To construct the bilinear pairing, we can use the Weil
pairing and Tate pairing associated with supersingular
elliptic curves.

With such group Gy, we can define the following hard
cryptographic problems:

— Discrete Logarithm (DL) Problem: Given
P, P’ € Gy, find an integer n such that P = nP’
whenever such integer exists.

— Computational Diffie-Hellman (CDH) Prob-
lem: Given a triple (P,aP,bP) € G, for a,b €
Zy, find the element abP.

— Decision Diffie-Hellman (DDH) Problem:
Given a quadruple (P, aP, bP, cP) € Gy for
a,b,c € Zy, decide whether ¢ = ab (mod ¢q) or
not.

— Gap Diffie-Hellman (GDH) Problem: A class
of problems where the CDH problem is hard but
DDH problem is easy.



Groups where the CDH problem is hard but the
DDH problem is easy are called Gap Diffie-Hellman
(GDH) groups. Details about GDH groups can be
found in [2], [3], [8].

2.2 Blind signature scheme based on GDH prob-
lem

The blind digital signature was first introduced by
Chaum in [5] and becomes essential tools for e-cash.
After Chaum suggested a construction method of a
blind signature scheme based on RSA problem, there
are many researches [1], [13], [14] dealing with blind
digital signatures as well as their security. Recently,
Boldyreva in [4] introduced a blind digital signature
scheme based on Gap Diffie-Hellman problem and proved
its security. For our threshold blind signature scheme,
we construct a new blind signature which is defined as
follows:

Let G; be GDH group of prime order g. Public infor-
mation is I = (¢, P, H) where P is generator of G; and
H :{0,1}* — G is an one-way hash function. The new
blind GDH signature scheme BGS[G1] = (BK, BS, BY),
where BIC, BS and BV are key generation, blind sign-
ing and verification algorithms respectively, is defined
as:

- BK(I): Pick randomly s £ Zy and compute
Q <« sP. Return (pk = (¢, P,H,Q),sk = s),
where pk and sk are public key and secret key
respectively.

— BS(I,sk,M): The user wants a message M €
{0,1}* to be signed “blindly”. After picking ran-
dom number r <& Zy, he computes M’ = r -
H (M) and sends it to the signer. The signer com-
putes ¢/ = s- M’ and sends it to the user. The

user then computes the signature o = r~!-¢’ and
outputs (M, o).
- BV(pk, M, 0): If Vppy(P,Q,H(M),0) =1 then

return 1 else return 0, where Vppy() is an efficient
algorithm which solves the DDH problem in Gj.

2.3 Threshold cryptosystem

The concept of a threshold scheme was first intro-
duced by Shamir [15]. In the (¢,n)-threshold scheme,
a secret D is divided into n pieces D1, Do, ..., D, such
that:

1. Knowledge of any ¢ or more D; pieces makes D
easily computable;

2. Knowledge of any ¢t — 1 or fewer D; pieces leaves
D uncomputable.

As mentioned above, the threshold scheme enables
possession of secret key to be distributed in public key
cryptosystem. Consequently, only ¢ parties or more can
decrypt a ciphertext encrypted with the corresponding
public key or produce a digital signature on a message.
With fewer ¢ parties, the work cannot be done. Many
relevant researches were found in [6], [9], [10], [11], [12].

However, the threshold scheme proposed by Shamir
requires a dealer to distribute shared secrets to parties.
Pedersen [12] proposed a threshold cryptosystem with-
out a trusted party. In this scheme, each party acts
as a dealer to choose the secret key and distribute it
verifiably to other parties. Subsequently, a group of
honest parties is formed and the group members re-
cover their secret share.

In the next section, we will describe our proposed
digital signature scheme making use of the threshold
scheme and the blind signature scheme described be-
fore.

3 Proposed Scheme

Our threshold blind signature scheme contains three
protocols: Key Generation protocol 7BK, Signature
Generation protocol 7BS and Signature Verification
protocol 7 BV.

3.1 Key Generation Protocol

The Key Generation protocol makes use of Verifiable
Secret Sharing proposed by Pedersen [12], where n play-
ers are involved in this protocol to make a (¢, n)-thres-
hold scheme under n > 2¢ — 1.

Let Gy be GDH group and P is a generator of Gj.
Denote n players involved in Key Generation protocol
to be {L1, Lo, ..., L,}. The public key and the secret
key of this group of players are ) and s, respectively.
The public share of the player L; is Q; and the corre-
sponding secret share is s;.

Each player L; behaves as the following to generate
a shared secret.

e At first, L; sends its information.

G1. Selects randomly (uniformly distributed as in [11])
a0 € Ly, keeps it secret and broadcasts aioP.

G2. Picks up randomly a polynomial f;(z) over Z, of
degree at most ¢ — 1 such that f;(0) = a;o. Let

fl(x) = a;0 +apx+ -+ ai,t_ll’til

G3. Computes and broadcasts a;; P for j = 1,2, ... ,t—
1; sends f;(j) secretly to each player L; for j =
1,2,...,m; j #1i.

e [; receives information from other players.

G4. After receiving f;(¢) from L; for j = 1,2,...,n; j #
i, the player L; verifies f;(i) by checking

t—1

fJ(Z)P = Z’Lk . ajkP

k=0

If the check fails, L; broadcasts a complaint against
L;. Assume that none of players have a com-
plaint.

G5. Computes the secret share s; = >._, fi(i), the
public share @); = s; P and the public key Q =

Z?:l aiQP.



After execution of the Key Generation protocol, the
public key is @ = sP. The secret key s = Y1 | a;o is
distributed to n players but does not appear explicitly
in the protocol.

3.2 Signature Generation Protocol

Let M be a message to be signed, and H : {0,1}* —
G1 be an one-way hash function. The public key output
from the Key Generation protocol is Q = sP, where s
is the implicit secret key constructed by n signers via
the threshold scheme. Suppose that a user A wants
to get a signature on the message M blindly from ¢
signers. Denote ¢ signers by S = {L;|1 <i < t}.

S1. User A chooses randomly (uniformly distributed)
r € Zj and blinds the message M by compu-
ting M" = rH(M). A sends M’ along with w; =
Hjig ﬁ to every signer L; for i € S.

JF

S2. Signer L;, after receiving M’, computes a partial
signature o; and sends it back to the user, where

i
g; = siwiM

S3. User A, after receiving o;, verifies o; by compu-
ting
é(oy, P) = é(wiM', Q)
If the above equation does not hold, A sends M’
again to get the correct o;. Otherwise, A takes
summation of all o; and unblinds to get the sig-
nature o on the message M.

o=r"1 Z o; (1)
€S
3.3 Signature Verification Protocol

The signature o on a message M is accepted if and
only if:
é(o, P) = e(H(M),Q) (2)

3.4 Correctness

Firstly, the correctness of the signature scheme must
involve the correctness of verification of Eq.(2) in Sig-
nature Verification Protocol. That means the partial
signature o; is valid if the signer i-th is honest. We
have:

é(O’i,P) =

Secondly, we verify the correctness of the threshold
blind signature scheme. The scheme signature o has

form:
o = r*IZai
€S
—1 j !
= i M
) Hj—z’ ®)
€S jES
J#i
= 7 YrsH(M) (4)

= sH(M)

Eq.(4) is derived from Eq.(3) by Lagrange interpola-
tion.
The verification equation gives us:

é(o,P) = eH(M),Q)
— &(H(M),sP)
= é(sH(M),P)

Hence, if ¢ is valid signature on M, the verification
equation always holds.

4 Security Analysis

In this section we discuss about the security aspects
of our proposed scheme. The security consideration
includes of blindness, robustness and unforgeability of
the signature scheme.

On blindness, the user can get a valid signature on a
message without revealing the content of message to
signers. Robustness of the scheme ensures that the
scheme can tolerate even t — 1 of n > 2t — 1 signers
are corrupted. On the other hand, unforgeability not
only is secure against one-more-forgery attack but also
is secure even when t — 1 signers were corrupted by an
adversary. The first kind of attack was introduced in
[13] and [14], which means that after getting ¢ blind
signatures from signers, the user must not be able to
produce more than ¢ signatures. The second attack in-
dicates that even an adversary can corrupt up to ¢t —1
signers, the adversary cannot produce a valid signature
on a message.

Let A be an adversary who can corrupt up to ¢ — 1
signers as well as acts as a user in execution of the
Signature Generation protocol. We have the following
definition:

Definition 1 Let TBS = (TBK,TBS,TBV) be the
threshold blind signature scheme. TBS is secure thres-
hold blind signature scheme if:

1. Unforgeability. No adversary who corrupts at most
t — 1 signers, with non-negligible probability, can
do one-more forgery attack, that is an adversary
cannot produce more than £ signature after exe-
cuting TBS protocol £ times.

2. Robustness. FEven there exists an adversary who
can corrupt up to t — 1 signers, the Key Genera-
tion and Signature Generation protocols complete
successfully.

4.1 Blindness

First of all, we state that our proposed signature
scheme is blind. As pointed out in [4], the proposed
signature scheme is blind. Since 7 is chosen randomly
from Zj, therefore M’ = rH (M) is also a random ele-
ment in group G;. Thus signers only receive the ran-
dom information from the user and there is no way to
know the original message. The signers also cannot link
between the information they received and the message
which is output by the user.



4.2 Robustness

The robustness of the proposed scheme is shown by
the following theorem:

Theorem 1 The threshold blind signature scheme TBS
is robust for an adversary who can corruptt—1 signers
among n signers such that n > 2t — 1 signers.

Proof. Asin [12], every signer chooses randomly a sec-
ret a;o uniformly distributed in Zj during 7BK proto-
col. Therefore even there exists an adversary who can
corrupt up to t — 1 signers among n > 2t — 1 signers,
any subset of ¢ signers constructs the unique secret key
s uniformly distributed in Zj, thus the public key @ is
uniformly distributed in G;. That means 7BK com-
pletes successfully in case at most ¢t — 1 signers are cor-
rupted.

In the signing protocol 7 BS, every partial signature
o; is verified by correspondent public key Q; = s;P.
Even at most ¢t — 1 signers can be corrupted, the ad-
versary still needs partial signatures from other signers
to form ¢ valid signature shares. With ¢ valid signature
shares, the signature o = sH (M) can be produced by
Eq.(1) at step S3 of TBS, and its correctness was shown
in Section 3.4. Therefore 7BS protocol completes suc-
cessfully too. These showed that TBS is robust. O

4.3 Unforgeability

To show unforgeability, we utilize the fact that if the
underlying signature scheme is secure then the corre-
sponding threshold signature scheme is secure if it is
simulatable, which was used in [10].

First, we consider the simulatable condition. The
view VIEWA(TBS(s1, 82, .., 8n, (M,Q),0) of the ad-
versary A during the Signature Generation protocol
consists of a message M, the public key @, the infor-
mation of corrupted signers s; for i = 1,2,...,t—1 and
the signature 0. Now we construct a simulator STM
which simulates 7BS:

STM’s input is a public key @), a message M, a signa-
ture o on M, secret shares s1, ss, ..., S;_1 of corrupted
signers.

1. SIM chooses 7' € Z; randomly.
2. SIM computes partial signature:
ol =r's;wH(M)
forl1 <i<t-—1.

3. For an uncorrupted signer, SIM computes par-
tial signature as

t—1
r_ 72: ’
O't—T’O' Ui

=1

Denote the information produced by the above sim-
ulator SIM as SIM(M,Q, s1,82...,8t—1,0). We have
the following lemma:

Lemma 1 VIEWA(TBS(s1,82...,8n, (M,Q),0))and
SIM(M,Q,s1,82,...,5—1,0) have the same probabil-
ity distribution.

Proof. By comparing the information produced by
SIM and T BS protocol we have:

1. Both the protocol and the simulator choose a
blind factor randomly from Zj, r in TBS and
r’ in SIM. The probability distribution of r and
r’ are the same.

2. The T BS generates t partial signatures o; for 1 <
1 < t. Each of them contains the blind factor r
and the shared secret s;, 1 < ¢ < t. The si-
mulator STM also produces t partial signatures
ol for1 < i < t. Each of them contains the
blind factor 7’ and the share secret s;, 1 <1 < t.
Because blind factors r and r’ have same proba-
bility distribution, partial signature o; and o,
1 <1 <t have same probability distribution too.

These complete the proof of Lemma 1. O

Now, we consider the blind signature presented in
Section 2.2. We will use similar technique in [4], where
the author defined “Chosen target CDH” assumption
and proved that the blind signature scheme is secure
assuming the hardness of the chosen-target CDH prob-
lem. According to the assumption, given a group G =
(g) of prime order ¢, a random hash function H :
{0,1}* — G* and a secret key x € Zj with the cor-
responding public key y = ¢*, there is no polynomial-
time adversary B which is given public key y, the tar-
get oracle 7g which outputs random point in G and
the “helper” oracle (-)* can output any subset of tar-
get points such that the number of queries to the helper
oracle is strictly less than the number of queries to the
target oracle. We propose the problem and assumption
as follows:

Definition 2 Let G; be GDH group of prime order q
and P is a generator of Gy. Let s be a random ele-
ment of Zj and Q = sP. Let H : {0,1}* — G1 be
a random hash function. The adversary B is given
input (¢, P,Q,H) and has access to the target oracle
T, that returns a random point U; in Gi and the
helper oracle cdh-s(-). Let qr and qu be the number
of queries B made to the target oracle and the helper
oracle respectively. The advantage of the adversary at-
tacking the chosen-target CDH problem Advglfcdh (B) is
defined as the probability of B to output a set of I pairs
((‘/1,].1), (V27j2), ceey (‘/l;jl)); fO’I" alli = 1,27 . ,l = .ji =
1,2,...,q7 such that V; = sU;, where all V; are distinct
and q < qr.

The chosen-target CDH assumption states that there
is no polynomial-time adversary B with non-negligible
Advg—"(B).

Under assumption that the chosen-target CDH prob-
lem is hard for all groups where CDH problem is hard,
including GDH groups, we will show the blind signa-
ture proposed in Section 2.2 is secure by the following
theorem:



Theorem 2 If the chosen-target CDH assumption is
true in the group Gy then the blind signature scheme
BGS[G1] is secure against one-more forgery under cho-
sen message attack.

Proof. Let A be a polynomial time adversary at-
tacking BGS[G1] against one-more forgery under chosen
message attack. We will construct a polynomial time
adversary B for chosen-target CDH problem such that
Advig] (A) = Adve " (B).

The adversary A has access to a blind signing oracle
cdh-s(-) and the random hash oracle H(-). Then the
adversary B can solve the chosen-target CDH problem
by simulating A. First, B provides pk = (¢, P, H, Q) to
A and B has to simulate the random hash oracle and
the blind signing oracle for A.

Each time A makes a new hash oracle query which
differs from previous one, B will forward to its target
oracle and returns the reply to A. B stores the pair
query-reply in the list of those pairs. If A’s query is
same as previous one, B will take and send the corre-
spondent reply which B stored before.

If A makes a query to blind signing oracle, B will
forward to its helper oracle cdh-s(-) and returns the
answer to A.

At some point, A outputs a list of message-signature
pairs ((M1,01), (Ma,02),...,(M;,01)). B can find M;

in the list stored hash oracle query-reply fori =1,2,...,1.

Let j; be the index of the found pair, then B can output
its list as ((o1,71), (02, J2),--., (01, 71))-

In the view of A, the above simulation and real pro-
tocol are indistinguishable and B is successful only if A
is successful. Thus, Adv%@j’}i(A) = Advgl_th(B). O

Theorem 3 The threshold blind signature scheme TBS

is as secure as the blind signature scheme BGS[G1] against

one-more forgery under chosen message attack.

Proof. The proof of Theorem 3 can be easily derived
from Lemma 1 and Theorem 2. U

By Theorems 1 and 3, we can say that the proposed
threshold blind signature scheme is secure and robust.

5 Performance evaluation

This section evaluates performance of the proposed
scheme. The following tables show the comparison of
computation in the Signature Generation protocol.

| Oper. | KKL scheme | LLJ scheme | Our scheme |

| Oper. | KKL scheme | LJY scheme | Our scheme

Am 2 2(n —t +1) 0
M 5 o — 1 1
E 8 6 0
| 0 0 0
A N/A N/A 0
S N/A N/A 1

Anm 2+ 1 2 + 1 0
M t+5 I —1+6 1
E 6 8 0
| 0 0 1
A N/A N/A t—1
S N/A N/A 2

Table 1: Computation in the user side

Table 2: Computation in the signer side

In the above tables, A, M, E and | mean modular
addition, multiplication, exponentiation and inversion
respectively. A and S denote point addition and scalar
multiplication on an elliptic curve. KKL and LJY
schemes are the threshold blind signature schemes in
[9], [10] based on discrete logarithm problems. N/A
means Not Available.

In the proposed scheme, to produce a signature, a
user has to perform verification of partial signatures.
The verification spends ¢ scalar multiplication and 2t
pairing computations. This may be burden for users.
Therefore, the verification computation for users can be
taken over by signers if we let signers perform verification
of partial signatures. This can be done and save com-
putation by designating a signer to do verification job.

Since the proposed scheme works on an elliptic curve,
the advantage of the scheme is small key size. More-
over, the signature size produced by the proposed scheme
is small, since it is an element in Gj.

6 Concluding Remarks

We have proposed a secure and robust threshold blind
signature scheme based on pairings. The scheme was
proven as secure as the blind GDH signature scheme
in random oracle model. In addition, our scheme ex-
hibits robustness. Even there exists an adversary who
can corrupt up to ¢ — 1 signers among n > 2t — 1 sig-
ners, the scheme still completes successfully. As further
work, we can design another threshold key generation
protocol using secure Distributed Key Generation pro-
tocol, which probably makes our scheme more secure.

References

[1] M. Bellare, C. Namprempre, D. Pointcheval, M.
Semanko, “The One-More-RSA-Inversion Prob-
lems and the Security of Chaum’s Blind Signature
Scheme”, Cryptology ePrint Archive — 2001/02.

[2] D. Boneh and M. Franklin, “ID-based Encryption
from the Weil-pairing”, Advances in Cryptology —
CRYPTO’2001, LNCS 2139, Springer-Verlag, pp.
213-229, 2001.

[3] D. Boneh, H. Shacham, and B. Lynn, “Short
Signatures from the Weil-pairing”, Advances in
Cryptology — ASIACRYPT’2001, LNCS 2248,
Springer-Verlag, pp. 514-532, 2001.



[4]

[11]

[13]

[15]

[16]

A. Boldyreva, “Threshold Signature, Multisig-
nature and Blind Signature Schemes Based on
the Gap-Diffie-Hellman-group Signature Scheme”,
Public Key Cryptography - PKC 2003, LNCS 2567,
Springer-Verlag, pp. 31-46, 2003.

D. Chaum, “Blind Signatures for Untraceable Pay-
ments”, Advances in Cryptology — CRYPTO’82,
pp- 199-203, Plenum, 1983.

R. Gennaro, S. Jarecki, H. Krawczyk and
T. Rabin, “Robust Threshold DDS Signatures,
Advances in Cryptology’96 — EUROCRYPT 96,
LNCS 1070, Springer-Verlag, pp. 354-371, 1996.

R. Gennaro, S. Jarecki, H. Krawczyk and T.
Rabin, “Secure Distributed Key Generation for
Discrete-log Based Cryptosystems”, Advances in
Cryptology’99 — FEUROCRYPT’99, LNCS 1592,
Springer-Verlag, pp. 295-310, 1999.

A. Joux and K. Nguyen, “Separating Decision
Diffie-Hellman from Diffie-Hellman in Crypto-
graphic Groups”, Cryptology ePrint Archive —
2001/03.

J. Kim, K. Kim and C. Lee, “An Efficient
and Provably Secure Threshold Blind Signature”,
ICISC’2001, LNCS 2288, Springer-Verlag, pp. 318-
327, 2002.

C.L. Lei, W.S. Juang and P.L. Yu, “Provably Se-
cure Blind Threshold Signatures Based on Dis-
crete Logarithm”, National Computer Symposium
1999, pp. C198-C205, 1999.

T.P. Pedersen, “A Threshold Cryptosystem with-
out a Trusted Party”, Advances in Cryptology
- FEUROCRYPT’91, LNCS 547, Springer-Verlag,
pp- 522-526, 1991.

T.P. Pedersen, “Non-interactive and Information-
theoretic Secure Verifiable Secret Sharing”, Ad-
vances in Cryptology — CRYPTO0’91, LNCS 576,
Springer-Verlag, pp. 129-140, 1991.

D. Pointcheval and J. Stern, “Provably Secure
Blind Signature Schemes”, Advances in Cryptology
- ASIACRYPT’96, LNCS 1163, Springer-Verlag,
pp- 252-265, 1996.

D. Pointcheval and J. Stern, “Security Argu-
ment for Digital Signatures and Blind Signatures”,
Journal of Cryptology, Springer-Verlag, Vol.13
No. 3, pp. 361-396, 2000.

A. Shamir, “How to Share a Secret”, Commmuni-
cation of the ACM, Vol. 22, No. 11, pp. 612-613,
Nov. 1979.

F. Zhang and K. Kim, “ID-Based Blind Signa-
ture and Ring Signature from Pairings”, Advances
in Cryptology — ASTACRYPT’ 2002, LNCS 2501,
Springer-Verlag, pp. 533-547, 2002.



