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Abstract Exposure of secret keys is one of the most critical issues in a cryptographic system. It
seems to be unavoidable. Recently, the notion of key-evolving paradigm was proposed as a means
of mitigating the harmful effects that key exposure can cause. In this model, the whole lifetime
is divided into distinct periods (e.g., days) such that at time period j, the signer holds the secret
key SKj and updates it periodically, while the public key PK is fixed during its lifetime. We
present an intrusion-resilient key-evolving Schnorr signature based on this notion. It has the
following property: If secret keys of all periods are not compromised, it is not possible to forge
signatures relating to non-exposed secret keys. Our scheme is constructed from unforgeably
secure Schnorr signature scheme, which is based on the Discrete Logarithm Problem.

1 Introduction

Key exposures appear to be inevitable. Especially,
methods to prevent key exposure entirely (e.g., by
using tamper-resistant devices) seem cost-prohibitive
and impractical for most common applications. Thus
minimizing their negative impacts is extremely im-
portant. A long line of researches for dealing with
this issue has been proposed.

In forward-secure schemes [1,2], the secret key is
stored by a single signer and this key is updated by
the signer at the beginning of every time period.
this security preserves the security of past signa-
tures even after the secret signing key has been
exposed.

Threshold schemes [6,12] distribute secrets among
n devices so that exposure of secrets from, say,
t of these devices will not allow an adversary to
“break” the scheme.

In key-insulated schemes [7], the adversary can-
not generate signatures for the future (as well as
past) time periods even after learning the current
signing key. This security assumes secure storage
on a server with which the user periodically com-
municates.

Recently presented intrusion-resilient schemes
[8] assume two modules: a (possibly mobile) “signer”
and a (generally stationary) “base” like key-insulated
model. Intrusion-resilience preserves the security

of past and future time periods even if both signer
and base are compromised, as long as the compro-
mises are not simultaneous. In the case of simul-
taneous compromise, the security of past (not the
future) time periods is preserved.

Tzeng et al. [13] proposed a key-evolving parad-
igm, like the one used in forward-secure digital sig-
nature schemes. They deal with the key exposure
problem of public-key encryption schemes, but sig-
nature schemes also will have same paradigm. Let
the whole lifetime be divided into periods, start-
ing with 0. The public key PK of the signer is
fixed for the whole lifetime. The signer’s secret
key at time period i is SKi, i ≥ 0. When time
runs from period i to period i + 1, the signer up-
dates his secret key from SKi to SKi+1 and then
deletes SKi immediately, possibly with help from
a trusted agent TA. If attacker breaks into the
signer’s system during time period i and gets the
signer’s secret key SKi at that time period, at-
tacker cannot get the secret keys in the other time
periods directly since they have been deleted with
the key evolving paradigm, even if the signer is not
aware of losing his secret key, he can be sure that
only those signatures generated in the time period
are forged. In the next time period, the security of
newly created signatures is guaranteed. So in this
paradigm, we will present the notion of intrusion-
resilience different from one which Itkis et al. [8]



propose. Our intrusion-resilience will be achieved
using the properties of a linear system of equations
and the threshold cryptography [6].

The organization of this paper is as follows : We
give the functional definition in Section 2. The
description of our intrusion-resilient key-evolving
Schnorr signature scheme we call IRKE is given in
Section 3. We then analyze correctness, efficiency
and security of our scheme in Section 4. Finally,
we close by conclusion in Section 5.

2 Intrusion-Resilient Security
Model

Our definitions are based on the definition of the
key-evolving protocols [9]. In the definition, we
may assume that there is a trusted agent TA, who
holds some secret share for updating secret keys of
the signer.

2.1 Functional Definition

Definition 1. A key-evolving signature scheme is
a quadruple of probabilistic polynomial-time algo-
rithms (Gen, Upd, Sign, Ver):

1. Gen, the key generation algorithm.

In: security parameter(s)(in unary), the to-
tal number T of time periods

Out: the public key PK

2. Upd, the key update algorithm.

In: current secret key SKi

Out: new secret key SKi+1

3. Sign, the signing algorithm.

In: current secret key SKi , message M

Out: signature (sig, i) on M for current
time period i

4. Ver, the verifying algorithm.

In: message M , signature (sig, i) and public
key PK

Out: “valid” or “invalid”

We may assume a single TA for simplicity. In
practice, we distribute trust to multiple trusted
agents such that each TAj holds a share sj of the
system secret s. The signer with secret key SKi−1

and the TA’s together can compute SKi in a se-
cure way, through Shamir’s (k, n) threshold scheme
[12]. We discuss this in detail in Section 3.

Tzeng et al. [13] introduced the concept of re-
silience for public-key encryption scheme. It will

be similar for the signature scheme as follows.

Definition 2.(Resilience) Assume a security model
for signature scheme. A key evolving signature
scheme is z-resilient if the attacker cannot break
the signature scheme under the assumed security
model even if he gets z secret keys SKi1 , SKi2 , ..., SKiz .

Even if the attacker gets z secret keys SKi1 , SKi2

, ..., SKiz of z time periods, he cannot get an an-
other secret key SKi, for i 6= il, 1 ≤ l ≤ z. Ac-
tually, our scheme becomes to be (T − 1)-resilient
scheme, where T represents the total number of
time periods. So we present an additional defini-
tion about the concept of resilience.

Definition 3. A key-evolving protocol is intrusion-
resilient if it is (T − 1)-resilient.

The random oracle model assumes that hash
functions used in a scheme are “truly random”
hash functions [3]. Although the security under the
random oracle model is not rigid, it does provide
satisfactory security argument to related schemes
in most cases [4].

2.2 Cryptographic Assumptions

Our scheme is based on Schnorr signature scheme
whose security is based on the Discrete Logarithm
Problem. It is described as follow. Given an ele-
ment g in a group G of order t, and another element
y of G, the problem is to find x, where 0 ≤ x ≤ t−1,
such that y is the result of composing g with itself
x times. So the security of our scheme relies on the
assumption that discrete logarithms are difficult to
compute.

3 Our Intrusion-Resilient Scheme:
Construction

Our scheme (denoted IRKE) using the Shamir’s
(k, n) threshold scheme [12], where several poly-
nomials are employed, is presented as below. We
assume that hash functions h1 : {0, 1}∗ → {0, 1}t

and h2 : {0, 1}∗ → Zq are defined. h1 is used
in defining a vector function H which is shown
in IRKE.Gen. And h2 is used in IRKE.Sign and
IRKE.Ver as in the Schnorr signature scheme.

Key Generation. We first generate N -bit safe
prime p : p = 2q + 1 such that q is odd prime
(such q, satisfying 2q + 1 is prime, is known as So-
phie Germain prime[5]). Then the signer actually
selects the secret information S = (s1, s2, ..., sT )



at random, and computes the public key PK =
(gs1 , gs2 , ..., gsT ) using S. The signer randomly se-
lects T polynomials used in sharing each element sl

of secret information S, 1 ≤ l ≤ T . Note that after
sharing, the signer discards the secret information
S and such T polynomials. The detailed method
how the signer makes and distributes shares will be
described in update algorithm. Figure 1 describes
key generation algorithm.

algorithm IRKE.Gen(1N , T )

Parameter :
Generate N -bit prime p ← 2q + 1 with that
q is a prime of at least 160-bit long.
Let Gq denote the subgroup of the quadratic
residues modulo p and g the generator of Gq.

Setting :
S ← (s1, s2, ..., sT ) in Gq (secret information)
PK ← (gs1 , gs2 , ..., gsT ) in Z∗p
Select T (T − 1)th degree polynomials

f1(x) ≡ s1 +
∑T−1

i=1 α1,ix
i mod q

f2(x) ≡ s2 +
∑T−1

i=1 α2,ix
i mod q

...
fT (x) ≡ sT +

∑T−1
i=1 αT,ix

i mod q
,where each fl is used to share sl, 1 ≤ l ≤ T

Distributing shares :
Let the signer and TA hold multiple share
(f1(xl), f2(xl), ..., fT (xl)), for some random
xl ∈ Zq, 1 ≤ l ≤ n

Define :
H(x) := h1(x)’s bit representation
i.e. H(x) := (e1, e2, ..., eT ) → T vector
,where each ei, 1 ≤ i ≤ T , is bit (0 or 1) and
h1(x) is a hash function with T -bit output

Return (PK)

Fig.1. Key generation.

Update. Key generation is immediately followed
by key update. The signer first divides each ele-
ment sl of secret information S into n shares fl(x1),
fl(x2), ..., fl(xn), 1 ≤ l ≤ T , where xi’s, 1 ≤ i ≤ n,
are distinct and large enough so that the maximum
time period never reaches them, and then makes n
multiple shares as follows:

(f1(x1), f2(x1), ..., fT (x1))
(f1(x2), f2(x2), ..., fT (x2))

...
(f1(xn), f2(xn), ..., fT (xn))

Assume that there are j TA’s, j < k, i.e., TA1,
TA2,..., TAj , and each pair of the signer and TA’s
share a private channel by which secret information
can be passed between them. So the signer gives
j multiple shares (f1(xm1), f2(xm1), ..., fT (xm1)),
1 ≤ m1 ≤ j, to all j TA’s individually and stores
the remaining multiple shares (f1(xm2), f2(xm2),
..., fT (xm2)), j + 1 ≤ m2 ≤ n, by himself.

algorithm IRKE.Upd

Assume that j TA’s, j < k (threshold value),
i.e., TA1, TA2, ..., TAj .

1. TAr1 , 1 ≤ r1 ≤ j, computes
SKUr1 ← {(f1(xr1), f2(xr1), ..., fT (xr1))
•H(i + 1)} mod q

,where • means inner product here and
throughout this paper, and then sends each
SKUr1 to the signer.

2. The signer selects (k − j) multiple shares
randomly and computes, d1 ≤ r2 ≤ dk−j ,

SKUr2 ← {(f1(xr2), f2(xr2), ..., fT (xr2))
•H(i + 1)} mod q

3. Finally, the signer computes
SKi+1 ←

∑j
r1=1 SKUr1 · (

∏
t1≤I 6=r1≤tk

xI

xI−xr1
)

+
∑dk−j

r2=d1
SKUr2 · (

∏
t1≤I 6=r2≤tk

xI

xI−xr2
)

mod q

((t1, t2, ..., tk) = (1, ..., j, d1, ..., dk−j))

Return (SKi+1)

Fig.2. Key update.

At this time, the following two inequalities must
be satisfied :

n− j < k and n < 2k − 2

In order that only the signer as well as only TA’s
cannot update secret key, i.e.,the signer must col-
lude some TA’s. At time period i, the signer holds
SKi. the signer and TA’s would like to compute
SKi+1, which shall be known to the signer only.
Figure 2 describes key update algorithm.

In Figure 2, we can make the computation veri-
fiable by letting each TAl publish gf1(xl), gf2(xl), ...
, gfT (xl). the signer then verifies whether he re-
ceives the right share from TAl, 1 ≤ l ≤ j, by
checking



gSKUl ≡ g(f1(xl),f2(xl),...,fT (xl))•H(i) mod p

,where g(f1(xl),f2(xl),...,fT (xl))•H(i) means the ran-
dom multiplication of TAl’s published values based
on the hash value of time period i.

algorithm IRKE.Sign(M,SKi)

k
r← Z∗q

r ← gk mod p
e ← h2(M, r)
z ← (SKi) · e + k mod q

Return (z, e, i)

Fig.3. Signing algorithm.

algorithm IRKE.Ver(M, PK, (z, e, i))

Let PK = (gs1 , gs2 , ..., gsT )
v ← gz · (g(s1,s2,...,sT )•H(i))−e mod p
e′ ← h2(M, v)
If e = e′, then return 1 else 0

Fig.4. Verifying algorithm.

Signing and Verifying. Our signature and veri-
fication algorithms, which are described in Figures
3 and 4, are exactly the same as in the Schnorr
signature scheme [11].

In Figure 4, we have a pre-computation process
in IRKE.Ver . g(s1,s2,...,sT )•H(i) means the random
multiplication of PK’s elements based on the hash
value of time period i.

4 Security Consideration

We now discuss the correctness, complexity and
security of our proposed scheme. Afterwards, T
means the total time period.

4.1 Correctness

Theorem 1. Let IRKE.Upd take output SKi+1 for
1 ≤ i < T . Then, SKi+1 ≡ (s1, s2, ..., sT )•H(i+1)
mod q.

Proof. By the Lagrange interpolation method, the
following equations are satisfied.

SKi+1 ≡
∑j

r1=1 SKUr1 · (
∏

t1≤I 6=r1≤tk

xI

xI−xr1
)

+
∑dk−j

r2=d1
SKUr2 · (

∏
t1≤I 6=r2≤tk

xI

xI−xr2
)

mod q

((t1, t2, ..., tk) = (1, .., j, d1, ..., dk−j))

≡ [
∑j

r1=1{(f1(xr1), f2(xr1), ..., fT (xr1))
•H(i + 1)} · (∏t1≤I 6=r1≤tk

xI

xI−xr1
)]

+[
∑dk−j

r2=d1
{(f1(xr2), f2(xr2), ..., fT (xr2))

•H(i + 1)} · (∏t1≤I 6=r2≤tk

xI

xI−xr2
)]

mod q

≡ [
∑tk

r=t1
{f1(xr), f2(xr), ..., fT (xr)}

•H(i + 1)] · (∏t1≤I 6=r≤tk

xI

xI−xr
) mod q

≡ (
∑tk

r=t1
f1(xr) · (

∏
t1≤I 6=r≤tk

xI

xI−xr
),∑tk

r=t1
f2(xr) · (

∏
t1≤I 6=r≤tk

xI

xI−xr
), ...,∑tk

r=t1
fT (xr) · (

∏
t1≤I 6=r≤tk

xI

xI−xr
))

•H(i + 1) mod q

≡ (s1, s2, ..., sT ) •H(i + 1) mod q

as desired.

We now verify that the verification is performed
correctly.

Theorem 2. Let PK = (gs1 , gs2 , ..., gsT ) be a
public key generated by the above key generation
algorithm. Let < M, (z, e, i) > be an output of
IRKE.Sign(M, SKi). Then IRKE.Ver(M,PK, (z, e, i))
= 1.

Proof. We will show that v ≡ r(= gk) mod q.
The process is the same as one of the Schnorr sig-
nature scheme.

v ≡ gz · (g(s1,s2,...,sT )•H(i))−e mod p
≡ g(SKi)·e+k · (gSKi)−e mod p
≡ g(SKi)·e+k · g−(SKi)·e mod p
≡ gk mod p

Hence h2(M,v) = h2(M, r), i.e., e = e′, always
holds. This means that the verification succeeds.

4.2 Complexity and Efficiency

Our scheme has public key and secret information
of size O(T ).

Key Generation. In order to complete the key
generation algorithm, we first have to generate se-
cret information, and calculate the public key using
it. It requires T modular exponentiations.



Update. Key update algorithm consists of sum-
mation and multiplication. Since we use Shamir’s
(k, n) threshold scheme, key update algorithm re-
quires (k · T

2 ) modular summations and k modular
multiplications. T

2 means that ideal hash opera-
tion generates T

2 ’s ′1′ bits on the average.

Signing and Verifying. Our scheme has same
signature and verification algorithm as Schnorr one.
So it has same efficiency and complexity except for
another pre-computation process in our verifica-
tion algorithm, which takes only T

2 modular mul-
tiplications. Also T

2 has same meaning as above.

4.3 Security Proof

Pointcheval and Stern[10] proved that Schnorr sig-
nature scheme is UF-CMA(Unforgeable Against Cho-
sen Message Attack). This means the following
Proposition.

Proposition 1. In the random oracle model, our
proposed scheme is unforgeable.

To complete this proof, we need the following
lemma 1.

Lemma 1. If Schnorr signature scheme is un-
forgeable, then our proposed scheme is unforgeable.

Proof. We can rewrite this lemma as “if proposed
scheme is forgeable, then we can build a forger F
which can break Schnorr signature scheme”. Now
we construct F . Let’s assume signer can create an
another valid signature. All information which is
given signer is just (M,< z, e, i >). Finally we can
know that signer’s cheating is z = (SKi) · e + k
mod q. This is the Schnorr signature scheme for
M . So F can break Schnorr signature scheme by
using signer.

Lu and Shieh [9] proved the following lemma 2,
which describes that our scheme is based on the
Discrete Logarithm Problem. We present it with-
out proof.

Lemma 2. The ability of the attacker, who is
able to compute the corresponding SK of a given
PK (PK = gSK), is equivalent to the solving of
the Discrete Logarithm Problem in Z∗P .

For Theorem 3, we need the following definition.

Definition 4. A linear system of equations, which
is a set of n linear equations in t unknowns, has

the following properties.

1. If t < n, then the system is (in general)
overdetermined and there is no solution.
2. If t = n and the set of n linear equations in t
unknowns are linearly independent, then the
system has a unique solution in the t unknowns.
3. Finally, if t > n, then the system is
underdetermined. In this case, the first (t− n)
unknown variables can be solved form in terms of
the last n unknown variables to find the solution.

Now we prove Theorem 3.

Theorem 3. In the random oracle model, our pro-
posed scheme is an intrusion-resilient key-evolving
Schnorr signature scheme.

Proof. Attacker can consider that each element of
secret information S is unknown variable and each
secret key is linear equation by definition 4. Since
the number of all elements in secret information S
is T , which represents the total time period, at-
tacker must know T secret keys to compromise a
secret key with non-exposed (past or future) time
period by definition 4, i.e., he must know secret
keys of all periods. So if secret keys of all periods
are not compromised, it is not possible to forge sig-
natures relating to non-exposed secret keys. This
means that our scheme is (T −1)-resilient. Thus it
is intrusion-resilient.

4.4 Attacks

We assume that each pair of the signer and TA’s
share a private channel by which secret information
can be passed between them. For now we suppose
that such channel does not exist. Since informa-
tion flows only from all TA’s to the signer, we can
consider the adversary’s possible active/passive at-
tacks related to the SKU value in IRKE.Upd . The
only way in which the adversary attacks the scheme
actively is just to send a bad SKU value. But this
can always prohibit him from issuing a valid sig-
nature. Also, we can easily know that passive at-
tacker who merely obtains SKU values can not do
anything worse that merely sabotage the system.
While we do not consider these situations for sim-
plicity, it is easy to show that our proposed scheme
is secure against these attacks.

5 Conclusion

We have presented an intrusion-resilient key-evolving
Schnorr signature scheme. We believe that intrusion-
resilience has the best strength against key expo-



sure problem. To get intrusion-resilience, we have
used the properties of a linear system of equations
and for updating secret key, we have also used
the Shamir’s (k, n) threshold scheme together with
TA. In our scheme, the signing procedure is as ef-
ficient as the signing protocol in the underlying
scheme. The main drawback of our scheme is that
key update needs help from TA. So it would be in-
teresting to find a key-evolving signature scheme,
in which key update can be done by the signer
alone.

Application. Since our scheme is based on the
discrete logarithm, we can apply for other discrete
logarithm based schemes such as the ElGamal scheme
(encryption and signature), the Digital Signature
Algorithm (DSA), and so on. And the Schnorr
signature scheme is particularly suited for smart
cards. So our scheme can be also applicable to this
application.
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