
Securing AES against Second-Order DPA
by Simple Fixed-Value Masking

Hwasun Chang Kwangjo Kim

International Research center for Information Security (IRIS)
Information and Communications Univ. (ICU)

58-4 Hwaam-dong, Yuseong-gu, Daejon, 305-732, Korea.

{s1364, kkj}@icu.ac.kr

Abstract Since Differential Power Analysis (DPA) has been announced, many countermeasures
and improved DPAs have been proposed for many algorithms. For securing AES, masking
methods were proposed as countermeasures. But all the previous masking methods have been
shown to be vulnerable to second order DPA (SODPA). We propose a masking method that is
resistant to SODPA and more efficient than previous methods in respect to required memory
and additional processing.

1 Introduction

Smart cards are used as tamper-resistant de-
vices. But Kocher et al. [1] introduced DPA
and it was shown that the key used internally
by smart cards can be found by side channel
attacks. After that, many countermeasures
have been proposed and used. Messerges [2]
proposed random masking method for secur-
ing AES finalists against power analysis. But
the method uses random masks generated for
each execution, and new S-boxes have to be
computed accordingly. This causes much pro-
cessing and much RAM is required to store
modified S-boxes. Because RAM is a scarce
resource in smart cards and processing power
of smart cards is relatively low, this can be a
problem especially for low cost smart cards.
In the meantime, Clavier [3] showed that soft-
ware countermeasures should be implemented
even though hardware countermeasures exist.
Nowadays many hardware countermeasures and
software countermeasures are used simultane-
ously to protect secret data in smart cards.
Recently, hardware countermeasure against side
channel attacks especially against probing at-
tacks was suggested [10].

To solve the problem of random masking
method, two kinds of improvements were pro-

posed. One is fixed value masking method and
the other is multiplicative masking method.
Fixed value masking method was suggested by
Itoh et al. [4]. In the method, fixed masks
and modified S-boxes are stored in ROM and
a set of masks and a modified S-box is selected
randomly in the beginning of encryption al-
gorithm. Because modified S-boxes are com-
puted in advance and stored in ROM instead
of RAM, it requires less processing and uses
less RAM than random masking method. And
because ROM has relatively more space than
RAM in smart cards, this method is practi-
cal. But this method is vulnerable to SODPA
[8]. Multiplicative masking method was pro-
posed by Akkar [5]. But Golic [6] showed that
this method is inherently vulnerable to DPA.
Some modifications of multiplicative masking
method [6, 7] were proposed but they required
much memory and processing.

It seems that fixed value masking method is
the most suitable masking method especially
for low cost smart cards. But it is vulnera-
ble to SODPA. In this paper, we propose a
method that uses less memory and processing
than previous methods and which is resistant
to SODPA.



2 Fixed-Value Masking

In this method, q sets of masks and the cor-
responding modified S-boxes are computed in
advance and stored in ROM. Two types of
fixed-value masking methods were proposed
by Itoh et al. In the first method, the ap-
plied masks are same across rounds but they
are different from byte to byte in intermediate
results called the State. In the second method,
the masks are same across rounds and bytes in
the State.

When the encryption is executed, a set of
masks and a modified S-box is selected ran-
domly and used. Because second method uses
less ROM, it is more adequate for low cost
smart cards. AES algorithm using the second
method is shown in Fig. 1 and Algorithm

1. Algorithm 2 is the modified version of
ByteSub transformation so that modified S-
box stored in ROM can be used. ShiftRow
and MixColumn are same with the original
transformations.

There are three kinds of masks FKi,r used
for masking round keys. That is for i = 0, i =
1, . . . , nr−1 , and i = nr where nr is the num-
ber of rounds in AES. And these masks are de-
rived from FIN and FOUT. FIN is the mask
that the bytes in the State have before en-
tering into ByteSub FM transformation and
FOUT is the mask that the bytes in the State
have after ByteSub FM transformation. FIN
and FOUT are generated randomly so that
any bit of FKi,r is 0 with probability 1/2.
(1) shows how FKi,r is derived from FIN and
FOUT. Modified S-boxes are computed by Al-

gorithm 3.

Algorithm 1 FixedMaskingAESEnc

FixedMaskingAESEnc(P )
1 / ∗ K ′

i,r : masked round key
(i = 0, 1, . . . , nr, r = 0, 1, . . . , q − 1) ∗ /

2 r = GenerateRandomNumber();
/ ∗ choose r = 0, 1, . . . , q − 1/

3 T ′ = P ;
4 for(i = 0; i < nr − 1; i + +){
5 T ′ = T ′ ⊕ K ′

i,r;
6 T ′ = ByteSub FM(T ′, r);

Figure 1: Fixed-value masking

7 T ′ = ShiftRow(T ′);
8 T ′ = MixColumn(T ′);
9 }
10 T ′ = T ′ ⊕ K ′

nr−1,r;
11 T ′ = ByteSub FM(T ′, r);
12 T ′ = ShiftRow(T ′);
13 T = T ′ ⊕ K ′

nr,r;
14 output T ;

Algorithm 2 ByteSub FM

ByteSub FM(X, r)
1 (x15, x14, . . . , x0) = X;
2 for(j = 0; j < 16; j + +) xj = S′

r[xj ];
3 X = (x15, x14, . . . , x0);
4 output X;

Algorithm 3 SboxUpdate

SboxUpdate(S, r)
1 for(x = 0; x < 256; x + +)

S′[x] = S[x ⊕ FINr] ⊕ FOUTr;
2 output S′;

In Algorithm 1, T’ is the intermediate masked
value. Let Ki be the original round key and
FKi,r be the fixed mask value. Then, K ′

i,r

satisfies K ′

i,r = Ki ⊕ FKi,r.

FKi,r =































FINr (i = 0)
ShiftRow(MixColumn
(FOUTr)) ⊕ FINr

(i = 1, . . . , nr − 1)
ShiftRow(FOUTr)

(i = nr)

(1)



3 Simple Fixed-Value Masking

We propose simple fixed-value masking method
that requires less ROM and additional process-
ing than previous fixed-value masking method.
In the method, q pairs of one byte masks and
modified S-boxes are stored in ROM. Modi-
fied S-box is computed using the correspond-
ing mask as in Algorithm 6. One pair is
selected randomly at the start of encryption.
All bytes of plaintext are masked by the same
one byte mask. Masked plaintext is encrypted
using modified S-box. At the end of the algo-
rithm, mask is applied once again and the re-
sult is the desired ciphertext. In the following
figure and algorithms, mr (r = 0, 1, . . . , q − 1)
represents the selected mask. r is the index for
the chosen mask and modified S-box. S is the
original S-box and S’ is the modified S-box.
ByteSub FM is same with Algorithm 2.

Figure 2: Simple fixed-value masking

Algorithm 4 SimpleF ixedMaskingAESEnc

SimpleF ixedMaskingAESEnc(P )
1 r = GenerateRandomNumber();

/ ∗ choose r = 0, 1, . . . , q − 1/
2 T ′ = P ;
3 T ′ = ApplyMask(T ′, r);
4 T ′ = T ′ ⊕ K0;
5 for(i = 0; i < nr − 1; i + +){
6 T ′ = ByteSub FM(T ′, r);
7 T ′ = ShiftRow(T ′);
8 T ′ = MixColumn(T ′);
9 T ′ = T ′ ⊕ Ki;
10 }
11 T ′ = ByteSub FM(T ′, r);

12 T ′ = ShiftRow(T ′);
13 T ′ = T ′ ⊕ Knr;
14 T = ApplyMask(T ′, r);
15 output T ;

Algorithm 5 ApplyMask

ApplyMask(T ′, r)
1 (t′15, t

′

14, . . . , t
′

0) = T ′;
2 for(j = 0; j < 16; j + +) t′j = t′j ⊕ mr;
3 T ′ = (t′15, t

′

14, . . . , t
′

0);
4 output T ′;

Algorithm 6 SboxUpdate2

SboxUpdate2(S, r)
1 for(x = 0; x < 256; x + +)

S′[x] = S[x ⊕ mr] ⊕ mr;
2 output S′;

3.1 Mask across the Transformations

The reason why the same mask is maintained
across the processing is to use the modified S-
box and the same mask for all bytes of the
State. We will show that the mask is main-
tained for each transformation used in AES.

The mask is maintained by RoundKeyAddition
because (T ′

i,j ⊕ mr) ⊕ Ki,j = (T ′

i,j ⊕ Ki,j) ⊕
mr (r = 0, 1, . . . , q − 1, i = 0, 1, . . . , nr, j =
0, 1, . . . , 15). T ′

i,j is the jth byte of the State
and mr is the selected mask. Ki,j is the jth
byte of the round key i. During ByteSub trans-
formation the mask is maintained because the
modified S-box is generated so that the mask
does not change using Algorithm 6. ShiftRow
transformation does not change the mask be-
cause all the bytes in the State have same
masks and it changes only the position.
In MixColumn transformation, the columns
of the State are considered as polynomials over
GF (28) and multiplied modulo x4 + 1 with a
fixed polynomial c(x), given by c(x) =′ 03′x3+′

01′x2 +′ 01′x +′ 02′. This can be written as a
matrix multiplication. Let b(x) = c(x)⊕ a(x),









b0

b1

b2

b3









=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

















a0

a1

a2

a3









(2)



If ai(i = 0, 1, 2, 3) is masked with mr,









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

















a0 ⊕ mr

a1 ⊕ mr

a2 ⊕ mr

a3 ⊕ mr









(3)

=









b0

b1

b2

b3









⊕ mr









02 ⊕ 03 ⊕ 01 ⊕ 01
01 ⊕ 02 ⊕ 03 ⊕ 01
01 ⊕ 01 ⊕ 02 ⊕ 03
03 ⊕ 01 ⊕ 01 ⊕ 02









(4)

=









b0 ⊕ mr

b1 ⊕ mr

b2 ⊕ mr

b3 ⊕ mr









(5)

From the above equations, we can see that
the mask before MixColumn transformation
is maintained after MixColumn.

3.2 Security Evaluation of Simple
Fixed-Value Masking Method

To apply DPA, there should be an interme-
diate value that is a function of plaintext(or
ciphertext) and part of encryption key. If this
condition is met, we can find the encryption
key part by part. But in the proposed method,
all the bytes in the State are masked with ran-
domly selected mask and an attacker cannot
know which value is used for masking. There-
fore, the attacker cannot know the bytes of
the State from plaintext and part of key. Be-
cause the mask is maintained until the final
round key addition finishes, the attacker can-
not guess the bytes of the State before final
round key addition from the ciphertext. If we
choose the masks so that any bit of mask can
be 0 with probability with 1/2, simple fixed-
value masking method will be secure against
probabilistic DPA presented in [4]. The proof
will be similar to that of [4].

But this method is vulnerable to SODPA
like other previous masking methods. We will
update the method in the later part of this
paper to make it secure against SODPA.

3.3 Advantage of Simple Fixed-Value
Masking Method

The proposed method has advantage in mem-
ory and processing requirement. Previous fixed-
value masking method requires at least three
bytes to store a mask. That is, one for ini-
tial round key, another for intermediate round
keys, and the third for final round key. But
simple fixed-value mask method uses only one
byte mask.

The simple fixed-value masking method re-
quires less processing because mask is applied
only at two points. That is, at the beginning
and at the end of encryption. But the fixed-
value masking method applies mask at nr + 1
points. Once at the initial round key addition,
and nr − 1 times at intermediate round key
addition and once at final round key addition.
Moreover if the key becomes larger than 128
bits, it requires more exclusive-OR computa-
tion at one point than the simple version. For
AES-128, the number of exclusive-OR opera-
tions for applying mask is like this. In fixed-
value masking method, it is 11 points x 16
bytes = 176 operations. In simple fixed-value
masking method, it is 2 points x 16 bytes =
32 operations. We summarize the comparison
in Table 1.

Table 1: Comparison of Fixed-Value Mask-
ing (FVM) and Simple Fixed-Value Masking
(SFVM) for AES-128

FVM SFVM

ROM space 3 Bytes/mask 1 Byte/mask
for mask

Number of
exclusive-OR 176 32
operations for

masking

3.4 Considerations for Security

If the masks and modified S-boxes are stored in
ROM, the values are known to the developer
and the values are same across smart cards



that have been produced with same mask. Maybe
some attacks could be tried using this fact.
If the masks are stored in EEPROM and the
masks and modified S-boxes are generated se-
cretly and different from card to card, cards
will be more secure.

4 Modification of Simple Fixed-
Value Masking against
Second Order DPA

Masking method is known to be subject to
SODPA [8]. We propose a method for securing
masking method against SODPA.

4.1 Second Order DPA (SODPA)

While masking method can be a countermea-
sure for first-order DPA, it is vulnerable to
SODPA. Let’s consider implementation of mask-
ing method as shown in Algorithm 7.

Algorithm 7 MaskedFunction

MaskedFunction(T )
1 m = GenerateRandomNumber();
2 maskedT = T ⊕ m;
3 T ′ = maskedT ⊕ SecretKey;
4 . . .
5 other operations
6 . . .
7 output T ′;

It is known that if there is a linear rela-
tionship between the instantaneous power con-
sumption and the Hamming weight of the data
being processed, Algorithm 8 is sound. In
Algorithm 8, i is the position of one bit in
SecretKey in Algorithm 7.

Algorithm 8 SecondOrderDPA

SecondOrderDPA(i)
1 for(b = 0; b <= 1; b + +){
2 Calculate average statistics Sb = |P1−

P3| by repeating the following{
3 Set the i − th bit of T input to b.
4 Make remaining bits of T random.
5 Collect algorithm′s instantaneous

power consumption at lines 1 and 3.
Call these values P1 and P3 respectively.

6 }
7 }
8 Calculate the DPA bias statistic

B = S0 − S1

9 If B > 0 then the ith key bit is a one,
otherwise, it is a zero

4.2 Modification of Simple Fixed-Value
Masking Method

We can avoid SODPA by making it difficult for
an attacker to decide the point where mask
is loaded. For this, we can load more than
two masks into memory that can be used for
operand of exclusive-OR. And then we can use
one mask among them randomly. SODPA re-
sistant simple fixed-value masking method is
shown in algorithm 9.

Algorithm 9 SODPAResistantSFV MAESEnc

SODPAResistantSFV MAESEnc(P )
1 r[0] = GenerateRandomNumber();

/ ∗ choose r = 0, 1, . . . , q − 1/
2 r[1] = GenerateRandomNumber();
3 m[0] = mr[0];
4 m[1] = mr[1];
5 l = GenerateRandomNumber();

/ ∗ choose l = 0 or 1 ∗ /
6 T ′ = P ;
7 T ′ = ApplyMask2(T ′, l);
8 T ′ = T ′ ⊕ K0;
9 for(i = 0; i < nr − 1; i + +){
10 T ′ = ByteSub FM(T ′, r[l]);
11 T ′ = ShiftRow(T ′);
12 T ′ = MixColumn(T ′);
13 T ′ = T ′ ⊕ Ki;
14 }
15 T ′ = ByteSub FM(T ′, r[l]);
16 T ′ = ShiftRow(T ′);
17 T ′ = T ′ ⊕ Knr;
18 T = ApplyMask2(T ′, l);
19 output T ;

Algorithm 10 ApplyMask2

ApplyMask2(T ′, l)
1 (t′15, t

′

14, . . . , t
′

0) = T ′;



2 for(j = 0; j < 16; j + +) t′j = t′j ⊕ m[l];
3 T ′ = (t′15, t

′

14, . . . , t
′

0);
4 output T ′;

Because the attacker cannot know which mask
in the memory is used, he cannot decide the
point for SODPA.

4.3 Consideration for Implementation

8-bit Microcontrollers like ST72101 has XOR
instruction. The source operand can be accu-
mulator and memory address. The destination
operand can be accumulator. In implement-
ing ApplyMask2, care should be taken so that
mask value is not moved from the place where
it is stored by line 3 or 4 in Algorithm 9. If it
is moved to other memory, the moment can be
a target for SODPA. If the mask is not moved
and used in the place using the address of the
mask, an attacker will not be able to find a
point to mount SODPA.

5 Conclusions

It seems that fixed-value masking method is a
good countermeasure for securing AES against
DPA. The method is especially adequate for
low cost smart cards that have little RAM
and low processing power. But the method
is vulnerable to SODPA and it can be more
simplified maintaining security. In this pa-
per, we propose a simplified SODPA resistant
simple fixed-masking method. The proposed
algorithm uses one byte for a mask and 256
bytes for modified S-box. It requires less ROM
and processing. If we use 2 pairs of masks
and modified S-boxes, required ROM or EEP-
ROM will be 514 bytes. Although low cost
smart cards have less RAM, they have rela-
tively large ROM and EEPROM. Therefore
the proposed method will be practical. By
making it difficult to determine the point for
SODPA, we achieved SODPA resistance. The
additional RAM usage and processing for SODPA
resistance is relatively small.

References

[1] P. Kocher, J. Jaffe, and B. Jun, “Differen-
tial Power Analysis”, Advances in Cryp-
tology - Crypto 1999, LNCS 1666, pp.
388-397, Springer-Verlag, 1999.

[2] T. Messerges, “Securing the AES Final-
ists Against Power Analysis Attacks”,
FSE 2000, LNCS 1978, pp. 150-164,
Springer-Verlag, 2001.

[3] C. Clavier, J. Coron, and N. Dab-
bous, “Differential Power Analysis in the
Presence of Hardware Countermeasures”,
CHES 2000, LNCS 1965, pp. 252-263,
Springer-Verlag, 2000.

[4] K. Itoh, M. Takenaka, and N. Torii,
“DPA Countermeasure Based on the
Masking Method”, ICICS 2001, LNCS
2288, pp. 440-456, Springer-Verlag, 2002.

[5] M. Akkar and C. Giraud, “An Implemen-
tation of DES and AES, Secure against
Some Attacks”, CHES 2001, LNCS 2162,
pp. 309-318, Springer-Verlag, 2001.

[6] J. Golic and C. Tymen, “Multiplicative
Masking and Power Analysis of AES”,
CHES 2002, LNCS 2523, pp. 198-212,
Springer-Verlag, 2003.

[7] E. Trichina, D. Seta, and L. Ger-
mani, “Simplified Adaptive Multiplica-
tive Masking for AES”, CHES 2002,
LNCS 2523, pp. 187-197, Springer-Verlag,
2003.

[8] T. Messerges, “Using Second-Order
Power Analysis to Attack DPA Resistant
Software”, CHES 2000, LNCS 1965, pp.
238-251, Springer-Verlag, 2000.

[9] S. Yen, “Amplified Differential Power
Cryptanalysis on Rijndael Implementa-
tions with Exponentially Fewer Power
Traces”, ACISP 2003, LNCS 2727, pp.
106-117, Springer-Verlag, 2003.

[10] Y. Ishai, A. Sahai, and D. Wagner, “Pri-
vate Circuits: Securing Hardware against
Probing Attacks”, Crypto 2003, LNCS
2729, pp. 463-481, Springer-Verlag, 2003.


