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Abstract— We introduce a new identification scheme based on the Gap Diffie-Hellman problem. Our
identification scheme makes use of the fact that the computational Diffie-Hellman problem is hard in the
additive group of points of an elliptic curve over a finite field, on the other hand, the decisional Diffie-Hellman
problem is easy in the multiplicative group of the finite field mapped by a bilinear map. We prove that this
scheme is secure against active attacks if the Gap Diffie-Hellman problem is intractable. Finally, we analyze
efficiency of the scheme comparing with other identification schemes.
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1 Introduction

It is the well-known fact that an identification scheme is
a very important and useful cryptographic tool. The identi-
fication scheme is an interactive protocol where a prover, P,
tries to convince a verifier, V, of his identity. Only P knows
the secret value corresponding to his public one, and the
secret information allows to convince V of his identity. If
we replace “identity” by “authenticity” of messages, identi-
fication schemes are nearly equivalent to signature schemes.
As mentioned by Fiat and Shamir [6] and Shoup [19], the
distinction between identification and signature schemes is
subtle. Therefore, two types of schemes can be used in-
terchangeably [6]. We can find several clear evidences in
[13, 9, 15].

Since Okamoto and Pointcheval [14] initiated the con-
cept of the Gap-problems and proposed that a Gap Diffie-
Hellman problem offers a signature scheme, several crypto-
graphic schemes based on such variants of Diffie-Hellman
(DH) assumption has been studied. Using the Weil-pairing,
Boneh and Franklin [2] and Boneh et al. [3] suggested an
efficient ID-based encryption scheme and short signature
scheme, respectively. To the best of our knowledge, there is
no an identification scheme based on a Gap-problem pub-
lished in the open literature.

In this paper, we propose a new identification scheme
based on the Gap Diffie-Hellman (G-DH) problem. Joux
and Nguyen [10] suggested that there exist groups in which
the decisional Diffie-Hellman (D-DH) problem is easy, al-
though the computational Diffie-Hellman (C-DH) problem
is hard in a group. The DH problem on such a group is
called the G-DH problem. Our scheme makes use of such
groups. We prove that our scheme is secure against active
attacks if the G-DH problem is hard.

The rest of the paper is organized as follows. Several
identification schemes are discussed in the following sub-
section. In Section 2 we formally state our definition of
security as well as basic tools used in our scheme. Our
identification scheme is presented in Section 3 based on the
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G-DH problem. In Section 4 we give a proof of security for
our scheme. In Section 5 we present a generalized model
of our identification. In Section 6 we end with concluding
remarks.

1.1 Previous Works
Types of attacks.
What an identification scheme is broken means that an
adversary succeeds in an impersonation attempt (making
the verifier accept with non-negligible probability). We can
classify the type of attacks according to the interaction al-
lowed to the adversary before an impersonation attempt
[19].

The weakest form of attack is a passive attack, where
the adversary is not allowed to interact with the system
at all before attempting an impersonation; the only avail-
able information to the adversary has is the public key of
the prover. Other attacks of intermediate level such as
eavesdropping attack or honest-verifier attack are essentially
equivalent to a passive attack.

The strongest form of attack is an active attack, in which
the adversary is allowed to interact with P several times,
posing as V. We may consider active attacks as adaptive
chosen-cipher text attacks. we should note that active at-
tacks are quite feasible in practice.

Fiat-Shamir (FS) scheme. Fiat and Shamir [6] proposed the
identification scheme based on the factoring problem. A key
generation algorithm constructs a modulus n by multiplying
two distinct random primes; chooses randomly an element
a ∈ Z∗n, and sets b = a2. The public key is 〈b, n〉, and the
secret key is a.

The protocol repeats the followings t times:

1. P chooses r ∈ Z∗n at random, computes x = r2, and
sends x to V.

2. V chooses ε ∈ {0, 1} at random, and sends ε to P.

3. P computes y = r · aε and sends y to V; V accepts if
y2 = x · bε, and rejects otherwise.

The FS scheme is secure against active attacks if factoring
is hard.



Feige-Fiat-Shamir (FFS) scheme. This scheme is also based
on the factoring problem. A key generation algorithm chooses
a modulus n as in the FS scheme. A secret key consists
of a list a1, . . . , al ∈ Z∗n randomly chosen, where l is a
given constant, and the corresponding public key consists
of b1, . . . , bl ∈ Z∗n, where bi = a2

i for 1 ≤ i ≤ l.
The protocol executes the followings t times in parallel:

1. P chooses r ∈ Z∗n at random, computes x = r2, and
sends x to V.

2. V randomly chooses ε1, . . . , εl ∈ {0, 1}, sends ε1, . . . , εl

to P.

3. P computes y = r
∏l

j=1
a

εj

j and sends y to V; V
accepts if x = y2

∏l

j=1
b
εj

j , and rejects otherwise.

This scheme is also secure against active attacks if factoring
is hard [5].
Other schemes. The Guillou-Quisquater (GQ) scheme is
based on the RSA-inversion problem. Guillou [9] shows that
this scheme is secure against passive attacks provided that
factoring is hard. Ohta and Okamoto [15] presents a mod-
ification of the FS scheme on the basis of the difficulty of
extracting the L-th roots, and they prove that their scheme
is as secure as the FS scheme. Okamoto [13] proposes three
identification schemes. The first one is based on the discrete
logarithm (DLP) problem, the second is based on the RSA-
problem, the last is based on the factoring problem. All of
the schemes are proved to be secure against active attacks.
Schnorr [18] also proposes identification schemes that are
based on the factoring problem or the DLP problem.

2 Definitions

A general approach of proving that an identification scheme
is secure is to show that it exhibits a zero-knowledge proof of
knowledge. However, the results of Goldreich and Krawczyk
[7], together with the argument of Shoup [19] say that any
efficient black box simulator for a three round, public coin
system can be turned into a prover that succeeds with non-
negligible probability.

In this paper, we make use of a computational reduc-
tion from solving a well-established problem to breaking
the cryptosystem rather than zero-knowledge proof tech-
niques. That is to say, the intuition of the proof is that we
use an adversary that breaks the cryptosystem to solve the
G-DH problem.

2.1 Notions of Security
We formally define a secure identification scheme, follow-

ing the same notations used in [17] and [19].
If A(·) is a probabilistic algorithm, then for any input x,

the notation Ax refers to the probability space that assigns
to the string σ the probability space that A, on input x,
outputs σ.

If S is a probability space, then [S] denotes the set of
elements in this space that occur with non-zero probability,
and PrS [e] denotes the probability that S associates with
the element e. If S is any probability space, then x ← S de-
notes the algorithm which assigns to x an element randomly
selected according to S.

The notation Pr[p(x1, x2 . . .)|x1 ← S1; x2 ← S2, . . .] de-
notes the probability that the predicate p(x1, x2, . . .) will
be true after the ordered execution of the algorithms x1 ←
S1, x2 ← S2, . . ..

In addition, we adopt the following conventions [5]:

1. P̄ represents a honest prover who follows its desig-
nated protocol, P̃ does a polynomial-time cheater,
and P acts as P̄ or P̃.

2. V̄ represents a valid verifier who follows the desig-
nated protocol, P̃ does an arbitrary polynomial-time
algorithm which may try to extract additional infor-
mation from P, and V acts as V̄ or Ṽ.

3. (P,V) represents the execution of the two party pro-
tocol where P is the prover and V is the verifier.

In general, an identification scheme (G,P,V) consists of
a probabilistic polynomial-time algorithm G, and two prob-
abilistic polynomial-time interactive algorithms P and V
with the following properties [5, 19]:

1. The algorithm G is a key generation algorithm. It
takes as input a string of the form 1k, and outputs a
pair of string (I, S). k is called a security parameter,
I is called a public key, and S is called a secret key.

2. P receives as input the pair (I, S) and V receives as
input I. After an interactive execution of P and V, V
outputs either a 1 (indicating "accept") or a 0 (indi-
cating "reject"). For a given I and S, the output of
V at the end of this interaction is a probability space
and is denoted by 〈P(I, S),V(I)〉.

3. A valid prover should always be able to succeed in
convincing the verifier. Formally speaking, for all k
and for all (I, S) ∈ [G(1k)], 〈P(I, S),V(I)〉 = 1 with
probability 1.

An adversary (P̃, Ṽ) is a pair of probabilistic polynomial-
time interactive algorithms. For a given key pair (I, S), we
denote by 〈P̄(I, S), Ṽ(I)〉 the string h output by Ṽ after
interacting with P̄ several times. For a given I and S,
yet again 〈P̄(I, S), Ṽ(I)〉 is a probability space. The string
h (called a "help string") is used as input to P̃ which
attempts to convince V̄. We denote by 〈P̃(h), V̄(I)〉 the
output of V̄ after interacting with P̃(h).

Definition 1 An identification scheme (G,P,V) is secure
against active attacks if for all adversaries (P̃, Ṽ), for all
constants c > 0, and for all sufficiently large k,

Pr


 σ = 1

∣∣∣∣∣∣

(I, S) ← G(1k);

h ← 〈P̄(I, S), Ṽ(I)〉;
σ ← 〈P̃(h), V̄(I)〉


 < k−c.

2.2 The Gap Diffie-Hellman Problem
The computational assumptions on which cryptographic

schemes are based can largely be divided into two types.
One is the intractability of an inverting problem such as in-
verting the RSA function, and computing the DH problem.
The other is the intractability of a decision problem such
as the D-DH problem.

In addition to such computational problems, Okamoto
and Pointcheval [14] define a new class of problems, called
the Gap-problems as follows. Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1} and R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1} be any
relation.

- The inverting problem of f is, given x, to compute
any y such as f(x, y) = 1 if it exists, or to answer
Fail.

- The R-decision problem of f is, given (x, y), to decide
whether R(f, x, y) = 1 or not. Here y may be the null
string, ⊥.



Usually, it is accepted that there exists the gap of diffi-
culty between two problems. Using this property, the Gap-
problem can be defined.

Definition 2 The R-gap problem of f is to solve the in-
verting problem of f with the help of the oracle of the R-
decision problem of f .

Okamoto and Pointcheval [14] claimed that the DH prob-
lems are the typical instance of the Gap problems. As the
inverting problem can be viewed as the computational prob-
lem, the C-DH problem corresponds to the inverting one,
and the D-DH problem does to the R-decision one. Let G
be any group of prime order q.

- The C-DH problem: given a triple of G elements
(g, ga, gb), find the element C = gab.

- The D-DH problem: given a quadruple of G elements
(g, ga, gb, gc), decide whether c = ab (mod q) or not.

- The G-DH problem: given a triple of G elements
(g, ga, gb), find the element C = gab with the help of a
D-DH oracle (which answers whether a given quadru-
ple is a DH quadruple or not).

The Tate-pairing is given as a specific example of the G-DH
problem in [14], and the Weil-pairing [20, 11] appears as
that of the G-DH problem in [2, 3].

Now we formally define groups in which the Weil pair-
ing works using notions defined above. Assume any group
action can be computed in a unit time.

Definition 3 Let G be a cyclic group of a prime order with
an arbitrary generator. For any polynomial-time probabilis-
tic algorithm A:

• G is said to be a τ -breakable D-DH group if the D-DH
problem can be computed on G by A whose running
time is bounded by τ .

• A is said to (t, ε)-break C-DH problem in G if the C-
DH problem can be solved by A whose running time
is bounded by t, the success probability SuccG(A) ≥ ε.

• G is said to be a (τ, t, ε)-G-DH group if it is a τ -
breakable D-DH group and no algorithm (t, ε)-breaks
C-DH on it.

2.3 The Weil-pairing
We can make use of any bilinear map on an elliptic curve

to construct a group G in which the C-DH problem is in-
tractable, but the D-DH problem is tractable [10, 2, 3]. In
particular, we make use of the Weil-pairing among bilinear
maps.

Let E be a elliptic curve over a base field K, and G1 and
G2 be two cyclic groups of order q for some large prime p.
The Weil pairing [20] is defined by a bilinear map e,

e : G1 ×G1 −→ G2,

where G1 corresponds to the additive group of points of
E/K, and G2 corresponds to the multiplicative group of
an extension field K of K.

Let P, Q ∈ G1. The Weil pairing e has the following
properties:

1. Identity: ∀ P ∈ G1, e(P, P ) = 1.

2. Alternation: ∀ P, Q ∈ G1, e(P, Q) = e(Q, P )−1.

3. Bilinearity: ∀ P, Q, R ∈ G1, e(P + Q, R) = e(P, R) ·
e(Q, R) and e(P, Q + R) = e(P, Q) · e(P, R).

4. Non-degeneracy: If e(P, Q) = 1 ∀ Q ∈ G1, then P =
O, where O is a point at infinity.

In addition to these properties, we have an efficient algo-
rithm to compute e(P, Q) ∀ P, Q ∈ G1 by [12].

As is noted in [2], the existence of the bilinear map e
implies (1) DLP in G1 can be reduced to DLP in G2, (2)
C-DH problem in G1 is still hard even though D-DH in G1

is easy [10].

3 Our Identification Scheme: Type I

For security parameter k, a pair of secret and public pa-
rameters is generated as follows. In practice, in our scheme
(say Identification scheme Type I), we adopt the modified
Weil pairing ê(P, Q) = e(P, φ(Q)), where φ is an automor-
phism on the group of points of E [2, 3].

Key generation.
On input k, the key generation algorithm G works as follows:

1. Generates two cyclic groups G1 and G2 of order m for
some large prime p and a bilinear map ê : G1×G1 →
G2.

2. Generates an arbitrary generator P ∈ G1.

3. Chooses randomly a, b, c ∈ Z∗m and computes v =
ê(P, P )abc.

4. The public parameter is Pub = 〈G1,G2, P, aP, bP, cP,
ê, v〉, and the secret parameter is Sec = 〈a, b, c〉. And
then publishes them.

Protocol actions between P and V.
As is the case for other identification schemes, Identifica-
tion scheme Type I includes several rounds, each of these is
performed as follows:

1. P chooses r1, r2, r3∈Z∗m at random, computes x =
ê(P, P )r1r2r3 , Q1 = r1P , Q2 = r2P , and Q3 = r3P ,
and sends 〈x, Q1, Q2, Q3〉 to V.

2. V picks ω ∈ Z∗m at random, and sends ω to P.

3. P computes y = ê(ωP, P )abc · ê(P, P )r1r2r3 and sends
to V; V accepts if y = vω · x, and rejects otherwise.

4 Proof of Security

Our proof of security is based on the intractability of the
G-DH problem. First, we formally describe this assumption
as follows, called as it the Gap Diffie-Hellman Intractability
Assumption (G-DHIA):

Definition 4 Let ZK be a probability space consisting uni-
form distribution over all integers in Z∗m. Let GK be a prob-
ability space consisting the uniform distribution over all el-
ements of the form nP 6= O ∈ G1, where n ∈ ZK. G-DHIA
is defined as the following: Given C = ê(P, P )abc ∈ G2, for
all polynomial-time probabilistic algorithm A, for all con-
stant c > 0, and for all sufficiently large k,

Pr


 C = C′

∣∣∣∣∣∣∣

x ← ZK, xP ∈ GK;
y ← ZK, yP ∈ GK;
z ← ZK, zP ∈ GK;
C′ ← A(ê, xP, yP, zP )


 < k−c.

Now we will prove:

Theorem 1 Under G-DHIA, Identification scheme Type I
on (τ, t, ε)-G-DH groups is secure against active attacks.



As mentioned before, to prove Theorem 1, it is good
enough to show that any adversary I who succeeds in im-
personating with non-negligible probability can be reduced
into a polynomial-time probabilistic algorithmA that (τ, t, ε)-
breaks C-DH problem with non-negligible probability. This
is proved in Lemma 1.

First to construct such an adversary I = (P̃, Ṽ), we as-
sociate the adversary with the following polynomials:

• TV(k): a time bound required for Ṽ to run the pro-
tocol once with P̄ including P̄’s computing time.

• NV(k): an iteration bound for Ṽ to run the protocol
with P̄.

• Toff(k): an off-line time bound for Ṽ to spend other
than running the protocol with P̄.

• TP(k): a time bound for P̃ to run the protocol with
V̄.

Then for a given public parameter Pub and "help string"

h, let

Pr[(P̃(h), V̄(Pub) = 1] = ε(h, Pub),

where the probability is taken over the coin tosses of P̃
and V̄. Since we assume that the adversary succeeds in
breaking the protocol, there must exist polynomial Π1(k)
and Π2 such that, for sufficiently large k,

Pr

[
ε(h, Pub) ≥ 1

Π2(k)

∣∣∣ (Sec, Pub) ← G(1k);

h ← (P̄(Sec, Pub), Ṽ(Pub))

]
≥ 1

Π1(k) .

Lemma 1 Assume that there exists an adversary I as above.
Then there exists a polynomial-time probabilistic algorithm
A that (t, ε)-breaks C-DH problem, whose running time τ is
defined by

O((NV(k)TV(k) + TP(k))Π2(k) + Toff(k))

and for a valid C-DH value C, the success probability ε is
bounded by

Pr


 C = C′

∣∣∣∣∣∣∣

x ← ZK, xP ∈ GK;
y ← ZK, yP ∈ GK;
z ← ZK, zP ∈ GK;
C′ ← A(ê, xP, yP, zP )


 ≥ Π1(k)−1/16.

Proof. First Let E denote an elliptic curve over a field K,
with E[m] its group of m-torsion points. From the defini-
tion of the Weil pairing, we know that if p = 0 or p does not
divides m then E[m] ∼= (Z/mZ)× (Z/mZ), where p is the
characteristic of the field. Let Φ be a natural map in the
modified Weil pairing. Note that, for random P ∈ E(K),
revealing ê(P, P ) gives no information on Φ(P ); i.e. the
distribution of ê(P, P ) and Φ(P ) are independent.

Throughout this paper, the underlying probability space
consists of the random choice of input x, y, z ∈ Z∗m, and
P∈RE(K) and the coin tosses of the algorithm.

As a proving method, rather than constructing the algo-
rithm A in toto, we will increasingly construct A in series
of “phases”. The algorithm runs in five phases. In the first
phase, we generate a public parameter Pub = 〈P, aP, bP 〉
with a corresponding secret parameter Sec = 〈a, b〉. In this
phase we simulate the view that the adversary I would have
if it interacted with a proving holding a “real” witness. In
the second phase we make the adversary try to convince a
honest verifier. In the third phase we use the approximate
witness to solve the C-DH problem, ê(P, P )ab. In the fourth
phase, we rerun the adversary I with the public parame-
ter Pub = 〈P, aP, bP, cP 〉 with additional value cP and its

corresponding secret parameter Sec = 〈a, b, c〉. In practice,
this phase simply executes the above three phases repeat-
edly. In the last phase, the final algorithm A is constructed,
which solves the C-DH problem, ê(P, P )abc.

Phase 1. This phase takes as input P, aP, bP , runs in the
expected time

O(NV(k)TV(k)Π2(k) + Toff(k)),

and outputs X̂i, where X̂i ≡ aγi
f mod m, f 6≡ (m−1) mod

m, and γi ∈ Z∗m is picked randomly by A, and h is a "help

string". In addition, we know

i. Pr[ε(h, Pub) ≥ Π2(k)−1] ≥ Π1(k)−1,

ii. the distribution of Φ(X̂i) is uniform and independent
of that of (h, Pub).

This stage runs as follows: We choose γi ∈ Z∗m, 1 ≤ i ≤
|Z∗m|− 1, at random and compute X̂i ≡ aγi

f mod m. With
the help of D-DH oracle, we can easily verify that (aP, γi

fP )
is a valid DH value. We then simulate the interaction
(P̄(·, Pub), Ṽ(Pub)).

To simulate the interaction, we employ a zero-knowledge
simulation technique [8, 19]. We then modify the identifi-
cation protocol as the following:

I. P̄ chooses ω′, r1, r2∈Z∗m at random, computes x =
ê(P, P )ω′ · ê(P, P )r1r2 , Q1 = r1P , Q2 = r2P , and
sends 〈x, Q1, Q2〉 to Ṽ.

II. Ṽ chooses ω ∈ Z∗m at random, and sends ω to P̄.

III. P̄ sets ω ≡ (X̂iω1 + ω0) mod m.
If ω′ 6= ω0, we go back to step I. Otherwise, P̄ com-

putes y = ê(aP, γi
fP )X̂iω1 · ê(P, P )r1r2 and sends to

Ṽ.

When the adversary completes the protocol, we outputs the
"help string" h that Ṽ outputs, along with X̂i.

In this step, the distribution of C is uniformly distributed
in G2, and its distribution is independent of every variable
other than in the adversary’s view up to that point, and is
also independent of the hidden variable ω′. Therefore, up
to this point, this simulation is perfect, and furthermore,
the probability that ω0 = ω′ is 1/|Z∗m|. If ω0 = ω′, then

C′ = ê(aP, γi
fP )X̂iω1 ê(P, P )ω′ ê(P, P )r1r2

= ê(aP, γi
fP )X̂iω1+ω′ ê(P, P )r1r2

= ê(aP, γi
fP )aγi

f ω1+ω0 ê(P, P )r1r2

= ê(P, P )aγi
f ω ê(P, P )r1r2

= ê(aP, γi
fP )ω ê(P, P )r1r2

= vω · x = C.

Moreover, C reveals no information of Φ(Q1), Φ(Q2), and
Φ(Sec), and the distribution of Φ(y) is uniform and indepen-
dent of Φ(Sec). From the above result, the expected value
of the total number of iteration rounds is (|Z∗m| · NV(k)).
This completes Phase 1.

Phase 2. This phase takes as input h, Pub, and output
from Phase 1, and runs in time O(TP(k)Π2(k)). It outputs
Fail or Success according to success outputs Z such that

Z ≡ aγi
f ≡ ab mod m, since ê(P, P )Z = ê(P, P )aγi

f

=
ê(P, P )ab, where f 6≡ (m − 1) mod m. The probability of
success, given that ε(h, Pub) ≥ Π2(k)−1, is at least 1/2.

For the sake of convenience, let ε = ε(h, Pub), and assume
ε ≥ Π2(k)−1.



This stage runs as follows: First run (P̃(h), V̄(Pub)) up
to dΠ2(k)e times, or until V̄ accepts. If V̄ accepts, let

y = ê(ωP, P )Z ê(P, P )r1r2

= ê(ωP, P )aγi
f

ê(P, P )r1r2

= ê(ωP, P )abê(P, P )r1r2

= vω · x
be the accepting conversation. Fixing the coin tosses of P̃,
run the interaction again up to d3Π2(k)e, or until V̄ accepts
again with a challenge ω′′ 6≡ ω mod m. In this case, let
X̂j ≡ aγj

f mod m. If V̄ accepts this challenge, then we
have another accepting conversation

y′ = ê(ω′′P, P )Z ê(P, P )r1r2

= ê(ω′′P, P )aγj
f

ê(P, P )r1r2

= ê(ω′′P, P )abê(P, P )r1r2

= vω′′ · x,

where Z ≡ aγi
f mod m, Z ≡ aγj

f mod m, and ωaγi
f ≡

ω′′aγj
f mod m. Therefore, we can easily calculate f =

log γj
γi

ω − log γj
γi

ω′′.

We analyze this phase using a variant of a truncated ex-
ecution tree as employed in [5, 15, 19]. Let M be a Boolean
matrix of which rows are indexed by the coin tosses ω′ of
P̃ and of which columns are indexed by the challenge ω of
V̄. Let M(ω′, ω) = 1 if and only if the pair of (ω′, ω) makes
V̄ be convinced by P̃.

As used in [5, 15, 19], we call a row ω′ in M “heavy” if
the fraction of 1’s in this row is at least 3ε/4. Then the
fraction of 1’s in M that lie in heavy rows is at least 1/4.
The reason comes from the following equations: let r be the
number of rows in M and c be the number of columns in
M , and r̄ be the number of non-heavy rows, then the total
number of 1’s in M is rcε. Then the total number of 1’s
that lies in non-heavy rows is r̄c 3ε

4
≤

(
3
4

)
rcε. Therefore,

the fraction of 1’s in heavy rows is induced by

rcε− r̄c
3ε

4
≥ rcε− rc

3ε

4

=
1

4
(rcε).

Now consider an accepting conversations by (ω′, ω) such
that M(ω′, ω) = 1. Since we have another accepting con-
versation by (ω′′, ω) satisfying that M(ω′′, ω) = 1. Then
the fraction of ω′′ which satisfies

M(ω′′, ω) = 1 ω′′ 6≡ ω mod m

is at least

3ε

4
− 1

|Z∗m| ≥ 3(Π2(k)−1)

4
− 1

Π2(k)

=
1

3

1

Π2(k)
=

Π2(k)−1

3
.

To complete the construction of this phase, we use the
simple fact that if θ is a small real number, then (1− θ) ≤
exp−θ [21]. Let θ be a success probability. When an ex-
periment is repeated at least t times, the probability that
all of experiments fail is at most (1 − θ)t ≤ exp−tθ. Thus,
if t ≥ 1/θ, the probability that at least one experiment
succeeds is at least 1 − exp−1. Therefore, for two accept-
ing conversations, the probability that the above procedure
succeeds is at least

(1− exp−1) · 1

4
· (1− exp−1) =

(
1− exp−1

)2

4
.

Thus, by a simple calculation, we can obtain the fact that
one of fourteen experiments must succeed, thus the prob-
ability that one of seven experiments succeeds is at least
1/2.

Phase 3. This phase takes as input, the output X̂i from
Phase 1, and the value Z from Phase 2. When Phase 2
succeeded, the probability that it solves the C-DH problem
is 1/2.

Recall that ω ≡ (X̂iω1 + ω0) mod m, if ω′ = ω0 then

aγi ≡ X̂i mod m, (1)

and

f 6≡ (m− 1) mod m and f = log γj
γi

ω − log γj
γi

ω′′ (2)

and
Z ≡ aγi

f mod m or Z ≡ aγj
f mod m, (3)

and
Z ≡ ab mod m.

Now consider only the case where Phase 2 succeeds at
least with the probability 1/2. First from Eq. (1), we have
ê(aP, γiP ) = ê(P, P )aγi , and from Eq. (2) and Eq. (3), we
have

ê(P, P )Z = ê(P, P )aγi
f

= ê(aP, γi
fP )

= ê(aP, bP )

= ê(P, P )ab.

Then with the probability 1/2, we can solve the C-DH prob-
lem from the following equations: This completes Phase 3.

It follows that, for sufficiently large k, the overall success
probability of the algorithm A is at least

ε(h, Pub)× 1

2
× 1

2
= Π1(k)−1 × 1

2
× 1

2
=

Π1(k)−1

4
.

Phase 4. This phase repeatedly executes Phase 1 to Phase 3
to solve the C-DH problem, ê(P, P )xc, where x ≡ ab mod m.
If phases from 1 to 3 succeed, this phase must succeed with
the above probability.

Phase 5. If Phase 4 succeeds with given probability, it is
equivalent to solving the C-DH problem

ê(P, P )xc = ê(P, P )abc

with probability

Pr[C = C′] =
Π1(k)−1

16
.

This completes the proof of Lemma 1. 2

Therefore, we can conclude that Identification scheme
Type I satisfies the requirement of Definition 1.

5 Generalized Identification Scheme:
Type II

We now describe a generalized model of identification
scheme Type I, say Identification scheme Type II. Identifi-
cation scheme Type II extends Identification scheme Type
I using k random numbers. The key generation algorithm
G is similar to that of Identification scheme Type I except
generating k random numbers.

Key generation.
On input k, the key generation algorithm G works as follows:



1. Generates two cyclic groups G1 and G2 of order m for
some large prime p and a bilinear map ê : G1×G1 →
G2.

2. Generates an arbitrary generator P ∈ G1.

3. Chooses randomly a1, . . . , a3k ∈ Z∗m and computes
v1 = ê(P, P )a1a2a3 , · · · , vk = ê(P, P )a3k−2a3k−1a3k .

4. The public parameter is Pub = 〈G1,G2, P, a1P, . . . ,
a3kP, ê, v1, · · · , vk〉, and the secret parameter is Sec =
〈a1, . . . , a3k〉. And then publishes them.

Protocol actions between P and V.
Identification scheme Type II is similar to Identification
scheme Type I, however, each round is performed in parallel
as follows:

1. P chooses r1, r2, r3∈Z∗m at random, computes x =
ê(P, P )r1r2r3 , Q1 = r1P , Q2 = r2P , and Q3 = r3P ,
and sends 〈x, Q1, Q2, Q3〉 to B.

2. V picks ω1, . . . , ωk ∈ Z∗m at random, and sends ω1, . . . ,
ωk to P.

3. P computes

y =

(
k∏

i=1

ê(ωiP, P )a3k−2a3k−1a3k

)
· ê(P, P )r1r2r3

and sends to V; V accepts if y =
(∏k

i=1
vωi

i

)
·x, and

rejects otherwise.

Theorem 2 Under G-DHIA, Identification scheme Type
II on (τ, t, ε)-G-DH groups is secure against active attacks.

This theorem follows immediately from Theorem 1.

6 Concluding Remarks

In this paper we present a practical construction of a
new identification scheme based on the G-DH problem us-
ing the Weil pairing. Then we prove that our identification
scheme is secure against active attacks. Our proposal can
be extended to a signature scheme using the Weil pairing.
Also similar to IBE (Identity-Based Encryption) scheme
proposed by Boneh et al., our scheme can be associated with
the public identity such as e-mail. It remains as an open
problem to implement an algorithm to efficiently compute
the Weil pairing.
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