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Abstract. We construct an interactive identification scheme based on
the bilinear Diffie-Hellman problem and analyze its security. This scheme
is practical in terms of key size, communication complexity, and avail-
ability of identity-variance provided that an algorithm of computing the
Weil-pairing is feasible. We prove that this scheme is secure against active
attacks as well as passive attacks if the bilinear Diffie-Hellman problem is
intractable. Our proof is based on the fact that the computational Diffie-
Hellman problem is hard in the additive group of points of an elliptic
curve over a finite field, on the other hand, the decisional Diffie-Hellman
problem is easy in the multiplicative group of the finite field mapped by
a bilinear map. Finally, this scheme is compared with other identification
schemes.
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1 Introduction

It is well known that an identification scheme is a very important and useful
cryptographic tool. The identification scheme is an interactive protocol where a
prover, P, tries to convince a verifier, V, of his identity. Only P knows the secret
value corresponding to his public one, and the secret value allows to convince
V of his identity. If we replace “identity” by “authenticity” of messages, iden-
tification schemes are nearly equivalent to signature schemes. As mentioned by
Fiat and Shamir [7] and Shoup [21], the distinction between identification and
signature schemes is very subtle. Therefore, two types of schemes can be used
interchangeably [7, 10, 17, 15].

Since Okamoto and Pointcheval [16] initiated the concept of the Gap-problems
and proposed that a Gap Diffie-Hellman problem offers a signature scheme, sev-
eral cryptographic schemes based on such variants of Diffie-Hellman assumption
have been studied. Using the bilinear Diffie-Hellman problem as an instance of
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the Gap Diffie-Hellman problem, Boneh and Franklin [2] and Boneh et al. [3]
suggested an efficient ID-based encryption scheme and a short signature scheme,
respectively. These imply that the bilinear Diffie-Hellman problem provides iden-
tification schemes. To the best of our knowledge, there is no identification scheme
based on the bilinear Diffie-Hellman problem published in the open literature.

In this paper, we construct a new identification scheme based on the Bilinear
Diffie-Hellman problem, which is a typical instance of the Gap Diffie-Hellman
problem and prove that this scheme is secure against passive and even active
attacks if the bilinear Diffie-Hellman problem is intractable, which are the main
contribution of this paper.

The rest of this paper is organized as follows: After describing several iden-
tification schemes in this section, we formally state our definition of security
as well as basic tools used in our scheme in Section 2. Our basic identification
scheme is presented based on the Bilinear Diffie-Hellman problem in Section 3.
In Section 4 we give a proof of security for our scheme. In Section 5 we present
a generalized model of our basic identification scheme. In what follows, we com-
pare with other schemes in the light of performance, and finally, we end with
concluding remarks.

1.1 Previous Works

Types of attacks.
In general, an identification scheme is said to be broken if an adversary succeeds
in an impersonation attempt (making the verifier accept with non-negligible
probability). We can classify the type of attacks according to the interaction
allowed to the adversary before an impersonation attempt [21].

The weakest form of attack is a passive attack, where the adversary is not
allowed to interact with the system at all before attempting an impersonation;
the only available information to the adversary is the public key of the prover.
Other attacks of intermediate level such as eavesdropping attack or honest-verifier
attack are essentially equivalent to the passive attack.

The strongest form of attack is an active attack, in which the adversary is
allowed to interact with P several times, posing as V. We may consider active
attacks as adaptive chosen ciphertext attacks. We should note that active at-
tacks are quite feasible in practice.

Fiat-Shamir (FS) scheme. Fiat and Shamir [7] proposed the identification scheme
based on the factorization problem. A key generation algorithm constructs a
modulus n by multiplying two distinct random primes, chooses randomly an
element a ∈ Z∗n, and sets b = a2. The public key is 〈b, n〉, and the secret key is
a.

The protocol repeats the following steps t times:

1. P chooses r ∈ Z∗n at random, computes x = r2, and sends x to V.
2. V chooses ε ∈ {0, 1} at random, and sends ε to P.



3. P computes y = r · aε and sends y to V; V accepts if y2 = x · bε, and rejects
otherwise.

The FS scheme is secure against active attacks if factorization is hard.

Feige-Fiat-Shamir (FFS) scheme. This scheme is also based on the factorization
problem. A key generation algorithm chooses a modulus n as in the FS scheme.
A secret key consists of a list a1, . . . , al ∈ Z∗n chosen randomly, where l is a given
constant, and the corresponding public key consists of b1, . . . , bl ∈ Z∗n, where
bi = a2

i for 1 ≤ i ≤ l.
The protocol executes the followings t times in parallel:

1. P chooses r ∈ Z∗n at random, computes x = r2, and sends x to V.
2. V randomly chooses ε1, . . . , εl ∈ {0, 1}, sends ε1, . . . , εl to P.
3. P computes y = r

∏l
j=1 a

εj

j and sends y to V; V accepts if x = y2
∏l

j=1 b
εj

j ,
and rejects otherwise.

This scheme is also secure against active attacks if factorization is hard [6].

Other schemes. The Guillou-Quisquater (GQ) scheme is based on the RSA-
inversion problem. Guillou [10] shows that this scheme is secure against passive
attacks provided that factorization is hard. Ohta and Okamoto (OO) [17] present
a modification of the FS scheme on the basis of the difficulty of extracting the
L-th roots, and they prove that their scheme is as secure as the FS scheme.
Okamoto [15] proposes three identification schemes. The first one is based on
the discrete logarithm problem (DLP), the second on the RSA-problem, and the
last one on the factorization problem. All of these schemes are proved to be
secure against active attacks. Schnorr [20] also proposes identification schemes
that are based on the factorization problem or DLP.

2 Definitions

A general approach of proving that an identification scheme is secure is to show
that it exhibits a zero-knowledge proof of knowledge. However, the results of
Goldreich and Krawczyk [8], together with the argument of Shoup [21] say that
any efficient black box simulator for a three round, public coin system can be
turned into a prover that succeeds with non-negligible probability.

In this paper, we make use of a computational reduction from solving a well-
established problem to break the cryptosystem rather than zero-knowledge proof
techniques. That is to say, the proving method is to use an adversary that breaks
the cryptosystem to solve the computational Diffie-Hellman problem.

2.1 Notions of Security

We formally define a secure identification scheme, using the same notations as
in [19] and [21].



If A(·) is a probabilistic algorithm, then for any input x, the notation Ax

refers to the probability space that assigns to the string σ the probability space
that A, on input x, outputs σ.

If S is a probability space, then [S] denotes the set of elements in this space
that occur with non-zero probability, and PrS [e] denotes the probability that S
associates with the element e. If S is any probability space, then x ← S denotes
the algorithm which assigns to x an element randomly selected according to S.

The notation Pr[p(x1, x2 . . .)|x1 ← S1;x2 ← S2; . . .] denotes the probability
that the predicate p(x1, x2, . . .) will be true after the ordered execution of the
algorithms x1 ← S1, x2 ← S2, . . ..

In addition, we use the same conventions in [6]:

1. P̄ represents an honest prover who follows its designated protocol, P̃ does a
polynomial-time cheater, and P acts as P̄ or P̃.

2. V̄ represents a valid verifier who follows the designated protocol, P̃ does
an arbitrary polynomial-time algorithm which may try to extract additional
information from P, and V acts as V̄ or Ṽ.

3. (P,V) represents the execution of the two party protocol where P is the
prover and V is the verifier.

In general, an identification scheme (G,P,V) consists of a probabilistic polynomial-
time algorithm G, and two probabilistic polynomial-time interactive algorithms
P and V with the following properties [6, 21]:

1. The algorithm G is a key generation algorithm. It takes a string of the form 1k

as input, and outputs a pair of string (I, S). k is called a security parameter,
I is called a public key, and S is called a secret key.

2. As input, P receives the pair (I, S) and V does I. After an interactive exe-
cution of P and V, V outputs either 1 (indicating "accept") or 0 (indicating
"reject"). For given I and S, the output of V at the end of this interaction
is a probability space which is denoted by 〈P(I, S),V(I)〉.

3. A valid prover should always be able to succeed in convincing the verifier.
Formally speaking, for all k and for all (I, S) ∈ [G(1k)], 〈P(I, S),V(I)〉 = 1
with probability 1.

An adversary (P̃, Ṽ) is a pair of probabilistic polynomial-time interactive
algorithms. For given key pair (I, S), we denote by 〈P̄(I, S), Ṽ(I)〉 the string h
output by Ṽ after interacting with P̄ several times. For given I and S, yet again
〈P̄(I, S), Ṽ(I)〉 is a probability space. The string h (called a "help string") is
used as input to P̃ who attempts to convince V̄. We denote by 〈P̃(h), V̄(I)〉 the
output of V̄ after interacting with P̃(h).

We adopt the definition of security against active attacks with respect to
such adversaries from [21] as follows:

Definition 1. An identification scheme (G,P,V) is secure against active at-
tacks if for all adversaries (P̃, Ṽ), for all constants c > 0, and for all sufficiently



large k,

Pr


σ = 1

∣∣∣∣∣∣

(I, S) ← G(1k);
h ← 〈P̄(I, S), Ṽ(I)〉;
σ ← 〈P̃(h), V̄(I)〉


 < k−c.

2.2 Bilinear Diffie-Hellman Problem

The computational assumptions when constructing cryptographic schemes can
mainly be classified into two types. One is the intractability of an inverting
problem such as inverting the RSA function, and computing the Diffie-Hellman
(DH) problem. The other is the intractability of a decision problem such as the
decisional Diffie-Hellman problem.

In addition to these problems, Okamoto and Pointcheval [16] define a new
class of problems, called the Gap-problem. Let f : {0, 1}∗×{0, 1}∗ → {0, 1} and
R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1} be any relation.

- The inverting problem of f is, given x, to compute any y such as f(x, y) = 1
if it exists, or to answer Fail.

- The R-decision problem of f is, given (x, y), to decide whether R(f, x, y) = 1
or not. Here y may be the null string, ⊥.

Usually, it is accepted that there exists the gap of difficulty between two
problems. Using this property, the Gap-problem can be defined as follows:

Definition 2. The R-gap problem of f is to solve the inverting problem of f
with the help of the oracle of the R-decision problem of f .

Okamoto and Pointcheval [16] claim that the DH problems are the typical
instance of the Gap problem. Since the inverting problem can be viewed as the
computational problem, the computational Diffie-Hellman (C-DH) problem cor-
responds to the inverting one, and the decisional Diffie-Hellman (D-DH) problem
does to the R-decision one. Here, we describe the Gap Diffie-Hellman (G-DH)
problem. Let G be any group of prime order m.

- The C-DH problem: given a triple of G elements (g, ga, gb), find the element
C = gab.

- The D-DH problem: given a quadruple of G elements (g, ga, gb, gc), decide
whether c = ab (mod q) or not.

- The G-DH problem: given a triple of G elements (g, ga, gb), find the element
C = gab with the help of a D-DH oracle (which answers whether a given
quadruple is a DH quadruple or not).

The Tate-pairing is given as a specific example that satisfies the property of the
G-DH problem [16].

We focus on the bilinear Diffie-Hellman (B-DH) problem that is a variant of
the C-DH problem, which is the underlying problem of our new design. Now we
describe the B-DH problem and the security defined over this problem.

Let G1 and G2 be two cyclic groups of prime order m and let P be a generator
of G1. Let ê : G1×G1 → G2 be a bilinear map which will be discussed in Section
2.3.



Definition 3. The B-DH problem in (G1,G2, ê) is the following: given (P, aP, bP, cP )
for some a, b, c ∈ Z∗m, compute v ∈ G2 such that v = ê(P, P )abc.

In practice, we make use of the Weil-pairing as the bilinear map. The security
over groups in which the B-DH problem is defined is as follows.

Definition 4. Let G be a cyclic group of a prime order with an arbitrary gen-
erator. For any polynomial-time probabilistic algorithm A:

• G is said to be a τ -breakable D-DH group if the D-DH problem can be com-
puted on G by A whose running time is bounded by τ .

• A is said to (t, ε)-break C-DH problem in G if the C-DH problem can be solved
by A whose running time is bounded by t, the success probability SuccG(A) ≥
ε.

• G is said to be a (τ, t, ε)-B-DH group if it is a τ -breakable D-DH group and
no algorithm (t, ε)-breaks C-DH on it.

2.3 Weil-pairing

We can make use of any bilinear map on an elliptic curve to construct a group
G in which the C-DH problem is intractable, but the D-DH problem is tractable
[11, 2, 3]. In particular, we make use of the Weil-pairing among bilinear maps.

Let E be a elliptic curve over a base field K and let G1 and G2 be two cyclic
groups of order m for some large prime m. The Weil pairing [22, 12, 4, 2, 3] is
defined by a bilinear map e,

e : G1 ×G1 −→ G2,

where G1 corresponds to the additive group of points of E/K, and G2 corre-
sponds to the multiplicative group of an extension field K of K.

Let P, Q ∈ G1. The Weil pairing e has the following properties:

1. Identity: For all P ∈ G1, e(P, P ) = 1.
2. Alternation: For all P, Q ∈ G1, e(P, Q) = e(Q,P )−1.
3. Bilinearity: For all P,Q, R ∈ G1, e(P +Q, R) = e(P, R)·e(Q, R) and e(P, Q+

R) = e(P,Q) · e(P, R).
4. Non-degeneracy: If e(P, Q) = 1 for all Q ∈ G1, then P = O, where O is a

point at infinity.

In addition to these properties, we have an efficient algorithm to compute e(P,Q)
for all P, Q ∈ G1 by [14]. In practice, in our basic scheme, we employ the modified
Weil-pairing ê(P, Q) = e(P, φ(Q)), where φ is an automorphism on the group of
points of E [2, 3]. For more details, we can refer to [4], [2], and [12].

As noted in [2], the existence of the bilinear map e implies (1) DLP in G1

can be reduced to DLP in G2, (2) C-DH problem in G1 is still hard even though
D-DH in G1 is easy [11].



3 Basic Identification Scheme

For a security parameter k, a pair of secret and public parameters is generated
as follows:

Key generation.
On input k, the key generation algorithm G works as follows:

1. Generate two cyclic groups G1 and G2 of order m for some large prime m
and a bilinear map ê : G1 ×G1 → G2.

2. Generate an arbitrary generator P ∈ G1.
3. Choose randomly a, b, c ∈ Z∗m and compute v = ê(P, P )abc.
4. The public parameter is Pub = 〈G1,G2, P, aP, bP, cP, ê, v〉, and the secret

parameter is Sec = 〈a, b, c〉. And then publish them.

Protocol actions between P and V.
As is the case for other identification schemes, this scheme consists of several
rounds. The protocol executes just once the following:

1. P chooses r1, r2, r3 ∈ Z∗m at random, computes x = ê(P, P )r1r2r3 , Q =
r1r2r3P , and sends 〈x,Q〉 to V.

2. V picks ω ∈ Z∗m at random, and sends R = ωP to P.
3. On receiving R, P sets S = r1r2r3R, computes Y ∈ G1 such that

Y = abcP + (a + b + c)S,

and sends it to V; V accepts P’s proof of identity if both x = ê(P,Q) and
ê(Y, P ) = v · ê(aP + bP + cP,Q)ω, and rejects otherwise.

4 Proof of Security

Our proof of security is based on the intractability of the B-DH problem. First,
we formally describe this assumption as follows, called as it the bilinear Diffie-
Hellman Intractability Assumption (B-DHIA):

Definition 5. Let Z be a probability space consisting uniform distribution over
all integers in Z∗m. Let G1 be a probability space consisting the uniform distri-
bution over all elements of the form nP 6= O ∈ G1, where n ∈U Z and let
G2 be a probability space consisting of uniform distribution over all elements in
G2. B-DHIA is defined as the following: Given C = ê(P, P )abc ∈ G2, for all
polynomial-time probabilistic algorithm A, for all constant c > 0, and for all
sufficiently large k,

Pr
G2


C = C ′

∣∣∣∣∣∣∣∣

x ← Z, xP ∈ G1;
y ← Z, yP ∈ G1;
z ← Z, zP ∈ G1;
C ′ ← A(ê, xP, yP, zP )


 < k−c.



Now we are ready to prove:

Theorem 1. Under B-DHIA, the basic identification scheme on (τ, t, ε)-B-DH
groups is secure against active attacks.

Proof. As mentioned before, the basic way of proving this theorem is just to
show that any adversary I who succeeds in impersonating with non-negligible
probability can be reduced into a polynomial-time probabilistic algorithm A
that (τ, t, ε)-breaks C-DH problem with non-negligible probability. This will be
proved in Lemma 2.

First to construct such an adversary I = (P̃, Ṽ), we consider the adversary
with the following polynomials [21]:

• TV(k): a time bound required for Ṽ to run the protocol once with P̄ including
P̄’s computing time.

• NV(k): an iteration bound for Ṽ to run the protocol with P̄.
• Toff(k): an off-line time bound for Ṽ to spend other than running the protocol

with P̄.
• TP(k): a time bound for P̃ to run the protocol with V̄.

Then for a given public parameter Pub and "help string" h, let

Pr[(P̃(h), V̄(Pub) = 1] = ε(h,Pub),

where the probability is taken over the coin tosses of P̃ and V̄. Since we assume
that the adversary succeeds in breaking the protocol, there must exist polynomial
Π1(k) and Π2(k) such that, for sufficiently large k,

Pr
[

ε(h,Pub) ≥ 1
Π2(k)

∣∣∣∣
(Sec, Pub) ← G(1k);
h ← (P̄(Sec,Pub), Ṽ(Pub))

]
≥ 1

Π1(k)
.

Lemma 1. Let ê be the modified Weil-pairing as defined in Section 2.3. The
sample space is the set of all triples S = {(P, Q)|P, Q ∈ E(K)}, where E is an
elliptic curve over K, and the distribution on the sample points is uniform, i.e.,
P, Q ∈U S. Let a, b, and c be indeterminates and consider the polynomial

ea,b,c(P, Q) = ê(P,Q)abc
.

For all a, b, c ∈ Z∗m, define random variable

Xi(a, b, c) = eai,bi,ci(P, Q).

Then 〈X0, . . . , X`(m)−1〉, where `(m) is the order of the extension field K of K,
are uniformly distributed in K and pairwise independent.

Proof. For any pair i, j in positive integers, i 6= j, and for any pair of points
P, Q ∈ E(K), there is a unique solution a, b, c ∈ Z∗m to the pair of equations:

eai,bi,ci(P,Q) = α,

eaj ,bj ,cj (P,Q) = β.

Thus, Pr
[
(Xi(P,Q) = α)∧ (Xj(P, Q) = β)

]
= Pr[Xi(P, Q) = α] ·Pr[Xj(P, Q) =

β] = 1/`(m)2. ¥



Lemma 2. Assume that there exists an adversary I as above. Then there ex-
ists a polynomial-time probabilistic algorithm A that (t, ε)-breaks C-DH problem,
whose running time τ is defined by

O((NV(k)TV(k) + TP(k))Π2(k) + Toff(k))

and for a valid C-DH value C, the success probability ε is bounded by

Pr
G2


C = C ′

∣∣∣∣∣∣∣∣

x ← Z, xP ∈ G1;
y ← Z, yP ∈ G1;
z ← Z, zP ∈ G1;
C ′ ← A(ê, xP, yP, zP )


 ≥

Π1(k)−1

16
.

Proof. First let E denote an elliptic curve over a field K, with E[m] its group
of m-torsion points. From the definition of the Weil pairing, we know that if
p = 0 or p does not divides m then E[m] ∼= (Z/mZ) × (Z/mZ), where p is the
characteristic of the field. Let Φ be a natural map in the modified Weil pairing.
Note that, for random P ∈ E(K), revealing ê(P, P ) gives no information on
Φ(P ); i.e. the distribution of ê(P, P ) and Φ(P ) are independent from Lemma 1.

Throughout this paper, the underlying probability space consists of the ran-
dom choice of input x, y, z ∈ Z∗m and P∈RE(K) including the coin tosses of the
algorithm.

As a proving method, rather than constructing the algorithm A in toto, we
will increasingly construct A in series of “phases”. The algorithm runs in five
phases. In the first phase, we generate a public parameter Pub = 〈P, aP, bP 〉
with the corresponding secret parameter Sec = 〈a, b〉.

In this phase we simulate the view that the adversary I would have if it
interacted with a proving holding a “real” witness. In the second phase we make
the adversary try to convince a honest verifier. In the third phase we use the
approximate witness to solve the C-DH problem, ê(P, P )ab. In the fourth phase,
we rerun the adversary I with the public parameter Pub = 〈P, aP, bP, cP 〉 with
additional value cP and its corresponding secret parameter Sec = 〈a, b, c〉. In
practice, this phase simply executes the above three phases repeatedly. In the
last phase, the final algorithm A is constructed, which solves the C-DH problem,
ê(P, P )abc.

Phase 1. This phase takes as input P, aP, bP , runs in the expected time

O(NV(k)TV(k)Π2(k) + Toff(k)),

and outputs (ã, γi
f , v, h), where v = ê(P, P )ãγi

f

, and h is a "help string". In
addition, we know that

i. Pr[ε(h, Pub) ≥ Π2(k)−1] ≥ Π1(k)−1,
ii. The distribution of Φ(c̃) is uniform and independent of that of (h,Pub).

This stage runs as follows: We choose ã, γi
f ∈ Z∗m, at random and compute

v = ê(P, P )ãγi
f

and X̂i ≡ ãγi
f (mod m), where f 6≡ (m − 1) (mod m). With



the help of D-DH oracle, we can easily verify that (P, ãP, γi
fP, abP ) is a valid

DH value. We then simulate the interaction (P̄(·,Pub), Ṽ(Pub)).
To simulate the interaction, we employ a zero-knowledge simulation technique

[9, 21]. We then modify the identification protocol as the following:

I. P̄ chooses ω′0, r1, r2 ∈ Z∗m at random, computes x = ê(P, P )ω′0r1r2 , Q =
ω′0r1r2P , and sends 〈x, Q〉 to Ṽ.

II. Ṽ chooses ω ∈ Z∗m at random, sets R = ωP , and sends R to P̄.
III. On receiving R, P̄ checks ê(R, P ) = ê

(
ã+γi

f−ω1
(ã+γi

f )ω0
P, P

)
. If ω′0 6= ω0, we go back

to step I. Otherwise, P̄ sets S = r1r2P , computes Y = ãγi
fP+(ã+γi

f−ω1)S,
and sends it to Ṽ.

When the adversary completes the protocol, we outputs the "help string" h
that Ṽ outputs, along with X̂i.

In this step, the distribution of C is uniformly distributed in G2, and its
distribution is independent of every variable other than in the adversary’s view
up to that point, and is also independent of the hidden variable ω′. Therefore, up
to this point, this simulation is perfectly correct, and furthermore, the probability
that ω0 = ω′0 is 1/|Z∗m|. If ω0 = ω′0, then

v · ê(ãP + b̃P,Q)ω = v · ê(ãP + γi
fP, ω′0r1r2P )ω

= ê(P, P )ãγi
f · ê(P, P )(ã+γi

f )ω′0r1r2ω

= ê(P, P )ãγi
f+(ã+γi

f )ω′0r1r2ω,

and

ê(Y, P ) = ê(ãγi
fP + (ã + γi

f − ω1)r1r2P, P )

= ê(P, P )ãγi
f+(ã+γi

f−ω1)r1r2 .

Since ω0 = ω′0 and

ãγi
f + (ã + γi

f )ω′0r1r2ω ≡ ãγi
f + (ã + γi

f )ω′0r1r2
ã + γi

f − ω1

(ã + γi
f )ω0

≡ ãγi
f + (ã + γi

f − ω1)r1r2,

we have ê(Y, P ) = v · ê(ãP + b̃P, Q)ω.
Moreover, C reveals no information of Φ(Q1), Φ(Q2), and Φ(Sec), and the

distribution of Φ(Y ) is uniform and independent of Φ(Sec). From the above
result, the expected value of the total number of iteration rounds is (|Z∗m|·NV(k)).
This completes Phase 1.

Phase 2. This phase takes as input h,Pub, and output from Phase 1, and runs
in time O(TP(k)Π2(k)). It outputs Fail or Success according to success outputs
u such that u ≡ ãγi

f ≡ ab (mod m), since ê(P, P )u = ê(P, P )ãγi
f

= ê(P, P )ab.
The probability of success, given that ε(h,Pub) ≥ Π2(k)−1, is at least 1/2.



For the sake of convenience, let ε = ε(h,Pub), and assume ε ≥ Π2(k)−1.
This stage runs as follows: First run (P̃(h), V̄(Pub)) up to dΠ2(k)e times, or

until V̄ accepts. If V̄ accepts, let

ê(Y, P ) = ê(ãb̃P + (ã + γi
f − ω1)S

= ê(ωP, P )ãb̃+(ã+γi
f−ω1)r1r2

= v · ê(ãP + γi
fP, Q)ω

be the accepting conversation. Fixing the coin tosses of P̃, run the interaction
again up to d4Π2(k)e, or until V̄ accepts again with a challenge ω′′ 6≡ ω (mod m).
In this case, let X̂j ≡ ãγj

f (mod m). If V̄ accepts this challenge, then we have
another accepting conversation

ê(Y ′, P ) = ê(ãγj
fP + (ã + γj

f − ω′1)S

= ê(ωP, P )ãγj
f +(ã+γj

f−ω′1)r1r2

= v · ê(ãP + γj
fP,Q)ω′′

where u ≡ aγi
f (mod m), u ≡ aγj

f (mod m), and ωaγi
f ≡ ω′′aγj

f (mod m).
Therefore, we can easily calculate f = log γj

γi

ω − log γj
γi

ω′′.

To show that there is another solution with non-negligible probability, we
make use of the same method as employed in [6, 17, 21]. Let M be a Boolean
matrix of which rows are indexed by the coin tosses ω′ of P̃ and of which columns
are indexed by the challenge ω of V̄. Let M(ω′, ω) = 1 if and only if the pair of
(ω′, ω) makes V̄ be convinced by P̃.

Just the same as in [6, 17, 21], we call a row ω′ in M “heavy” if the fraction
of 1’s in this row is at least 3ε/4. Then the fraction of 1’s in M that lies in heavy
rows is at least 1/4. The reason comes from the following equations: let r be
the number of rows in M and c be the number of columns in M , and r̄ be the
number of non-heavy rows, then the total number of 1’s in M is rcε. Then the
total number of 1’s that lies in non-heavy rows is r̄c 3ε

4 ≤ (
3
4

)
rcε. Therefore, the

fraction of 1’s in heavy rows is induced by

rcε− r̄c
3ε

4
≥ rcε− rc

3ε

4

=
1
4
(rcε).

Now consider an accepting conversations by (ω′, ω) such that M(ω′, ω) = 1.
Since we have another accepting conversation by (ω′′, ω) satisfying that M(ω′′, ω) =
1. Then the fraction of ω′′ which satisfies

M(ω′′, ω) = 1 ω′′ 6≡ ω (mod m)

is at least
∣∣∣∣
3ε

4
− 1
|Z∗m| − 2

∣∣∣∣ ≥
∣∣∣∣∣
3(Π2(k)−1)

4
− 1

Π2(k)

∣∣∣∣∣

=
1
4

1
Π2(k)

=
Π2(k)−1

4
.



To complete the construction of this phase, we use the simple fact that if ε
is a small real number, then (1 − ε) ≤ e−ε [23]. Let ε be a success probability.
When an experiment is repeated at least t times, the probability that all of
experiments fail is at most (1− ε)t ≤ e−tε. Thus, if t ≥ 1/ε, the probability that
at least one experiment succeeds is at least 1−e−1. Therefore, for two accepting
conversations, the probability that the above procedure succeeds is at least

(1− e−1) · 1
4
· (1− e−1) =

(
1− e−1

)2

4
.

Thus, by a simple calculation, we can obtain the fact that one of fourteen experi-
ments must succeed, thus the probability that one of seven experiments succeeds
is at least 1/2.

Phase 3. This phase takes as input, the output X̂i from Phase 1, and the value
u from Phase 2. Its running time is O(Π2(k) · log(Π2)2). When Phase 2 succeeds,
the probability that it solves the C-DH problem is 1/2.

Recall that ω ≡ ã+γi
f−ω1

(ã+γi
f )ω0

(mod m), if ω′ = ω0 then

ãγi
f ≡ X̂i (mod m), (1)

f 6≡ (m− 1) (mod m) and f = log γj
γi

ω − log γj
γi

ω′′, (2)

u ≡ ãγi
f (mod m) or u ≡ ãγj

f (mod m), (3)

and
u ≡ ãb̃ ≡ ab (mod m).

Now consider only the case where Phase 2 succeeds at least with the prob-
ability 1/2. First from Eq. (1), we have ê(aP, γiP ) = ê(P, P )aγi , and from Eqs.
(2) and (3), we have

ê(P, P )u = ê(P, P )ãγi
f

= ê(ãP, γi
fP )

= ê(ãP, b̃P )

= ê(P, P )ãb̃ = ê(P, P )ab.

Then with the probability 1/2, we can solve the C-DH problem from the following
equations: This completes Phase 3.

It follows that, for sufficiently large k, the overall success probability of the
algorithm A is at least

ε(h, Pub)× 1
2
× 1

2
= Π1(k)−1 × 1

2
× 1

2
=

Π1(k)−1

4
.



Phase 4. This phase repeatedly executes Phase 1 to Phase 3 to solve the C-DH
problem, ê(P, P )xc, where x ≡ ab (mod m). If phases from 1 to 3 succeed, it is
straightforward that this phase must succeed with the above probability.

Phase 5. If Phase 4 succeeds with given probability, it is equivalent to solving
the C-DH problem

ê(P, P )xc = ê(P, P )abc

with probability

Pr
G2

[C = C ′] =
Π1(k)−1

16
.

This completes the proof of Lemma 2. ¥

Therefore, we can conclude that the basic scheme satisfies the requirement
of Definition 1. This completes the proof of Theorem 1. ¥

5 Generalized Scheme

We now describe a generalized model of the basic identification scheme. The
generalized identification scheme extends the basic scheme in Section 3 using k
random numbers. The key generation algorithm G is similar to that of the basic
scheme except generating k random numbers.

Key generation.
On input k, the key generation algorithm G works as follows:

1. Generates two cyclic groups G1 and G2 of order m for some large prime m
and a bilinear map ê : G1 ×G1 → G2.

2. Generates an arbitrary generator P ∈ G1.
3. Chooses randomly a1, . . . , a3k ∈ Z∗m and computes v1 = ê(P, P )a1a2a3 , · · · , vk =

ê(P, P )a3k−2a3k−1a3k .
4. The public parameter is Pub = 〈G1,G2, P, a1P, . . . , a3kP, ê, v1, · · · , vk〉, and

the secret parameter is Sec = 〈a1, . . . , a3k〉. And then publishes them.

Protocol actions between P and V.
The generalized scheme is similar to the basic scheme, however, each round is
performed in parallel as follows:

1. P chooses r1, r2, r3 ∈ Z∗m at random, computes x = ê(P, P )r1r2r3 , Q1 =
r1r2r3P , and sends 〈x,Q〉 to B.

2. V picks ω1, . . . , ωk ∈ Z∗m at random, and sends R1 = ω1P, . . . , Rk = ωkP to
P.

3. On receiving k random values, P sets

S1 = r1r2r3R1, S2 = r1r2r3R2, . . . , Sk = r1r2r3Rk,



computes Y such that

Y =
k∑

i=1

a3i−2a3i−1a3iP +
k∑

i=1

(a3i−2 + a3i−1 + a3i)Si

and sends it to V; V accepts if both x = ê(P, Q) and ê(Y, P ) =
∏k

i=1 vi ·
ê(a3i−2P + a3i−1P + a3iP,Q)ωi , and rejects otherwise.

Theorem 2. Under B-DHIA, the generalized identification scheme in this sec-
tion on (τ ′, t′, ε′)-B-DH groups is secure against active attacks.

Proof(sketch) At first we assume that there exists an (t′, ε′)-breakable adversary
A who can break this identification scheme. Then from the proof of Theorem 1,
we can prove Theorem 2.

6 Comparison

In this section, we compare our basic scheme with the prior schemes in terms
of not only the computation overhead in the light of key size, communication
overhead, processing complexity but also their security.

We assume that an elliptic curve E over a base field K is chosen in the
same manner as [2]. That is, let E be the elliptic curve defined by the equation
y2 = x3 + 1 over Fp, where p is a prime satisfying p ≡ 2 (mod 3) and p = 6q− 1
for some prime q > 3. Note that for the sake of the convenience m is replaced
by q. As pointed out in [2], from the practical point of view, we can assume
that p and q is a 512-bit prime and a 140-bit prime respectively, since the MOV
reduction [13] then leads to a DLP in a finite field of size approximately 21024.

In addition, we assume that system parameters p and q for our basic scheme,
Schnorr, and Okamoto are 512-bit and 140-bit respectively, and the modulus n
for FFS, GQ scheme is 512-bit. We assume that the standard binary method
is employed for the modular exponentiation as well as for the point multipli-
cation in polynomial basis form. We also assume that the parameters for FFS
are l = 20 and t = 1. Here, we only consider Okamoto scheme as an Iden-
tification scheme 1 proposed in [15]. Note that for the purpose of comparison
with arithmetic operations of each scheme, we denote M the cost of modular
multiplication over a given finite field and A the cost of point addition over a
given elliptic curve. Table 1 shows the comparison of identification schemes. If
the Weierstraß equation over the affine coordinates in fields of characteristic two
is given by y2 + xy = x3 + a2x

2 + a6, then our scheme has a2 = 0. Further-
more, since a generator P of the group G1 is initially known all parties, we can
enable the point multiplication in elliptic curves to be more faster. In fact, the
point multiplication consists of point doublings and point additions. The binary
method requires (`− 1) point doublings and (W − 1) point additions, where ` is
the bit length and W the Hamming weight of the binary expansion, in general,
W = `/2. Therefore, if the point doublings are pre-computed, the point mul-
tiplication requires `

2A-point addition in average and `A-point addition in the



Table 1. Comparison of identification schemes

Our scheme Schnorr Okamoto FFS GQ

Security proof Yes Yes Yes Yes Yes

Secure against active attacks Yes No Yes Yes No

Underlying problem B-DH DLP DLP RSA RSA

ID-based variant Possible Possible Possible Possible Possible

Public key size (bits) 512 512 512 10,240 1,024

Private key size (bits) 420 140 280 10,240 512

Communication overhead (bits) 932 672 812 1,044 1,044

Preprocessing (Prover)
(# of field multiplications 140A 210M 245M 1M 30M
or point additions)

On-line processing (Prover)
(# of field multiplications 2M Almost 0M Almost 0M 10M 31M
over a given finite field)

On-line processing (Verifier)
(# of field multiplications 141M 210M 248M 11M 35M
over a given finite field)

worst case [4]. The pre-computation is possible because P is initially given. In
these cases, we can estimate that A costs less than or equal to two times M, i.e.,
A ≤ 2M.

From Table 1, we can state the properties of our scheme as follows: (1) Our
scheme is more efficient than Schnorr and Okamoto with respect to preprocessing
of prover and on-line processing overhead of both parties (prover and verifier).
(2) However, our scheme requires memory for secret key about two times that of
Schnorr and Okamoto. Moreover, its communication overhead increases around
four times more than those two schemes.

7 Concluding Remarks

In this paper we present a practical construction of a new identification scheme
based on the B-DH problem using the Weil pairing. Then we prove that our iden-
tification scheme is secure against active attacks. Our proposal can be extended
to a signature scheme using the Weil pairing. Also similar to IBE (Identity-Based
Encryption) scheme proposed by Boneh et al., our scheme can be associated with
the public identity such as e-mail. It remains as an open problem to implement
an algorithm to efficiently compute the Weil pairing as suggested in [24].
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