No More Panic in Florida: Reality or Dream?

August, 2001

IRIS (International Research center for Information Security)

ICU (Information and Communications Univ.), Korea

Kwangjo Kim, Jinho Kim, Byoungcheon Lee
1. Introduction
2. Security Requirements
3. Voting Schemes
4. System Configuration
5. Typical Implementation
6. Application
7. Summary
1. Introduction

- **Lession in Florida, 2000**
 - Counting: Manual -> Automatic
 - Voting place: Fixed -> Any place
 - Verifiability: Local -> Universal

- **Why do we consider Internet voting?**
 - Anyone can vote using internet
 - Anywhere from home, office, overseas, etc.

 -> Solution for the problem of decreasing the participation rate in manual voting

- **What are the problems in Internet voting?**
 - Strong security requirements: anonymity, privacy, completeness, fairness, receipt-freeness, etc.
 - No perfect solution and system
 - PKI is not ready.
New Trial

- **California**
 - Shadow election test of Internet voting system for the public election in Contra Costa County in 2000.

- **CyberVote**
 - Remote Internet voting with fixed and mobile internet tech
 - 3-year R&D program funded by European Commission

- **Our contribution**
 - Using PKI, 1 vote – 1 certificate
 - System satisfies most of important security requirements
 - First trial to worldwide voting
2. Security Requirements

- **Basic requirements**
 - Privacy: All votes must be secret
 - Completeness: All valid votes are counted correctly
 - Soundness: The dishonest voter cannot disrupt the voting
 - Unreusability: No voter can vote twice
 - Eligibility: No one who isn’t allowed to vote can vote
 - Fairness: Nothing can affect the voting

- **Advanced requirements**
 - Walk-away: The voter need not to make any action after voting
 - Robustness: The voting system should be successful regardless of partial failure of the system
 - Universal verifiability: Anyone can verify the validity of vote
 - Receipt-freeness: Voter should not be able to prove his or her vote to a buyer. (Voter does not have any receipt for the vote)
3. Voting Scheme

■ FOO92 Scheme
 ● Fujioka, Okamoto, Ohta, “A Practical Secret Voting Scheme for Large Scale Elections”, Auscrypt’92
 ● Features: Blind signature + Mix-net + Bit commitment

■ Implementation examples
 ● Sensus : L.F. Cranor, Washington Univ.
 http://www.ccrc.wustl.edu/~lorracks/sensus
 ● EVOX : M.A. Herschberg, R.L. Rivest, MIT
 http://theory.lcs.mit.edu/~cis/voting/voting.html

■ OMAFO99 Scheme
 ● Improved version of FOO92
 ● Features: Blind signature + Mix-net + threshold encryption
OMAFO99 scheme

System overview

1. Voter Authentication (voting + encryption + blind signature)
2. Voting (voting + encryption + signature)
3. Opening (Threshold decryption)
4. System Configuration

Admin Web Server (RA)

Mix Server

BB Server

Tally Server

Voter

CA

(1) Certificate Issue

(0) Registration

(2) Blind Sig.

(3) Ballot Casting

6) Counting Results

Registration stage : 0, 1
Voting stage : 2, 3
Counting stage : 4, 5, 6

(4) Mixing

(5) Tallying

Registration stage : 0, 1
Voting stage : 2, 3
Counting stage : 4, 5, 6
Registration stage

1) Access Web Page

Admin
Web Server

3) Registration
ID & Passwd, name, etc …

2) Down

4) Encrypted Data

5) Check & Store

6) Down

7) Key Generation

8) Private key

9) Public key

10) Registered Info + public key

11) Certificate Request

12) Certificate Issue

13) Certificate

Voter

Crypto2001
Voting Stage

1) Log In
 - ID & Passwd

2) Authenticated Channel

3) Check Double Voting
 - Admin DB

4) If not vote
 - BB DB

5) Select Vote.
 - Encrypt by counter key.
 - Blinding.

6) Requests blind sig.
 - BB Server

7) Blind Sig.
 - BB DB

8) Send blind sig.

9) Unblinding.
 - Encryption by mixer key.
 - Sign.

10) Ballot Casting

11) Sig. Verify & Store ballot
 - BB DB

Voter

Voting Applet

Admin Web Server

Admin

Web Server

DB
Counting Stage

1) Mixing
2) Tallying
3) Results
4) Announce

Admin Web Server

Mix Server

BB Server

BB DB

Counters Threshold

Crypto2001
5. Typical Implementation

- **Built-in components**
 - Java crypto library J/LOCK by STI
 - CA server by KSIGN
 - Web interface by InsolSoft
 - Security management by SECUi.com

- **Severs**
 - AS,BB : Apache web server and Tomcat to support JSP
 - DB : Oracle DB + JDBC
 - M,T : Implemented in C language

- **Voting applet**
 - Signed java applet to access a secret key and to open connections to multiple addresses
 - Platform : WINDOW98/+ on IBM PC
6. Application-Votopia

- 2002 FIFA World Cup Korea-Japan™
 - May. 31. ~ June. 30. 2002

- Objective
 - Selection of MVP player in 2002 world-cup games
 - Demonstrating electronic voting system to the world in easy and friendly manner

- Participants
 - Korea : IRIS, InsolSoft, KISTI, Samsung Secui.com, STI
 - Japan : NTT, Univ. of Tokyo

- Web-page
 - http://mvp.worldcup2002.or.kr
Example

Voting World Cup MVP - Microsoft Internet Explorer

Purpose : Players : Voters : Vote : Results : Link : Board : Sitemap

Country : Players

MVP Korea, Republic
Best Goalkeeper Korea, Republic

Copyright C&TS All right reserved.
7. Summary

- **Experimental Design of Internet voting system**
 - User friendly and secure Internet voting system
 - Applying PKI to the voting system

- **Expected Results**
 - cyber MVPs of 2002 FIFA World Cup Korea-Japan™
 - Contribution to the development of information security related-industry such as PKI.
 - Valuable lessons to the planned Internet voting systems

- **Help**
 - Active participation and no hacking of IACR members.
 - Any comments to kkj@icu.ac.kr are welcome.
 - Social engineering, political problem, etc