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SUMMARY S (ubstitution) -boxes are quite important compo-
nents of modern symmetric cryptosystems. S-boxes bring non-
linearity to cryptosystems and strengthen their cryptographic
security. An S-box satisfies the strict avalanche criterion (SAC),
if and only if for any single input bit of the S-box, the inversion
of it changes each output bit with probability one half. This paper
presents some interesting properties of S-boxes and proposes an
efficient and systematic means of generating arbitrary input size
bijective S-boxes satisfying SAC.

1. Introduction

In 1949, Shannon” proposed the outstanding notion
of “mixing transformations” which randomly distribute
the meaningful messages uniformly over the set of all
possible ciphertext messages. Mixing transformations
could be created by alternatively applying permutations®
and substitutions. In practice, a substitution (afterward,
we call “S-box”) is implemented as a logic circuit or a
table lookup memory and a permutation is implemented
as a one-to-one wiring. S-boxes bring nonlinearity to
cryptosystems and strengthen their cryptographic secu-
rity.

It could be considered that published symmetric
cryptosystems like DES®, FEAL® etc. are the good
design practices of the mixing transformation. In DES,
the substitution is implemented as eight 6-bit input 4-bit
output lookup tables. In FEAL, the arithmetic opera-
tions like cyclic rotation, addition modulo 2, etc. are
used for the substitution.

In order to design the good S-box, Kam and Davida®
proposed the completeness condition that each output
bit depends on all input bits of the substitution. Webster
and Tavares® introduced the strict avalanche criterion
(“SAC”) in order to combine the notions of the com-
pleteness and the avalanche effect® as explained in
Sect. 2. Moreover, Forré” discussed the Walsh spectral
properties of S-boxes satisfying SAC and extended the
concept of SAC to the subfunctions obtained from the
original function by keeping one or more input bits
constant, in order to prevent partial approximation
cryptanalysis. Lloyd® re-stated the Forrés extended
SAC and counted the number of S-boxes satisfying the
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criterion.

Some results®®? were published to design S-boxes
by randomly selecting from all possible reversible trans-
formation. However in the open literature there are
sparse publications concerning the systematic design
techniques for the generation of S-boxes satisfying SAC.

Thus the main purpose of this paper is to suggest
the properties of S-boxes satisfying SAC and to propose
the practical generation methods of S-boxes satisfying
SAC.

The organization of this paper is as follows: In
Sect. 2, we formally define and summarize the basic
definition of the cryptographically desirable S-box. In
Sect. 3, we discuss the simple generation method of
S-boxes satisfying SAC. In Sect. 4, we prove some inter-
esting theorems for S-box satisfying SAC and propose
the systematic and efficient enlargement of bijective
S-boxes into any input size.

2. Basic Definitions

We summarize here the formal definition of the
related criteria. Let Z denote the set of integers. Also,
let Z#* denote the n-dimensional vector space over the
finite field Z,=GF(2), and @ denote the addition over
Z3#, or, the bit-wise exclusive-or.

[Definition 1] For a positive integer #, define ¢{®, ¢f?,
emezpy by

=0, 0, -+, 0, 0, 1]
c;n):[oi 0) .'.) 0’ l, 0]

eP=[1,0, -, 0,0, 0].

[Definition 2 (Completeness)] A function f: ZF—Zf

is complete if and only if
2 S (@B xDet) >0, -, 0)

for all 7 (1=7/<#n), where both the summation and the
greater-than are component-wise over Z™.

This means that each output bit depends on all of
the input bits. Thus, if it were possible to find the
simplest Boolean expression for each output bit in terms

* The term permutation have been used here our prefer-
ence to the term transposition.
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of the input bits, each of those expressions would have
to contain all of the input bits if the function is complete.
[Definition 3 (Avalanche effect)] A function f:
Z{—Z7" exhibits the avalanche effect if and only if

IEZ:Z’,wt(f(x)@)f(x@cgn))): o1

for all /(1=/<#x). Here wt( ) denotes the Hamming
weight function.

This means that an average of one half of the

output bits change whenever a single input bit is com-
plemented.
[Definition 4 (SAC, Strong S-box)] We say that a
function f:Z7— Z;" satisfies the strict avalanche criterion
(SAQ), or f is a strong S-box, if for all (1<7<#) there
hold the following equations :

IEZZ,,f(-l')@f(x@CQ”))z(zﬂ—l, 2”—1, - 271—1, 271_1).

(1)

If a function satisfies SAC, each of its output bits
should change with a probability of one half whenever a
single input bit is complemented. Clearly, a strong S-box
is complete and exhibits the avalanche effect.

If some output bits depend on only a few input bits,
then, by observing a significant number of input-output
pairs such as chosen plaintext attack, a cryptanalyst
might be able to detect these relations and use this
information to aid the search for the key. And because
any lower-dimensional space approximation of a map-
ping yields a wrong result in 25 % of the cases, strong
S-boxes play significant roles in cryptography.
Notation : For a function f:Z#—Z, denoted by f(1<;
<m) the function Zf—Z, such that

F(x)=fu(x), fusl), =, folx), filx)).
We identify an element

Z=(Zk, Rp-1, ***, R, 21)

k
of Z# with an integer glz,-Zi“. To represent a function f:
28— 77", we often use the integer tuple
<H=LA0), 7, £(2), -+, f(2"=1)]

and call it the integer representation of . This represen-
tation can be obtained by combining {f»>, {fu-1>, -,
{fw, <A as

r= §<ﬁ>-zf*1.

3. Properties of Strong S-box

Let us discuss the cryptographic properties of
strong S-boxes or functions satisfying the strict ava-
lanche criterion.

3.1 Some Functions Never Satisfy SAC

[Definition 5(Linearity, Affinity)] A function f from
Z37 into Z7" is affine if there exist an »Xm matrix Ay
over Z; and an m-dimensional vector b, over Z such
that

flx)=xA;+ by

where x denotes the indeterminate »-dimensional
vector. A function f is linear if it is affine with b,=0.

It is well known"" that any cryptosystem which
implements linear or affine functions can be easily bro-
ken. This fact brings us the question: Are there linear
or affine functions satisfying the strict avalanche crite-
rion ?

The answer is of course “no”.
[Theorem 1] A strong S-box is neither linear nor
affine.
(Proof) Kam and Davida® showed that there are no
complete affine functions, and as mentioned before a
function which satisfies the strict avalanche criterion
must be complete. Thus the conclusion is obvious.
However, it is an easy task to give a direct proof :

Let f be an affine function :

f(x)=zA,Db;.
Then, for each /(1=<;=<#) it holds that
EZZ."f(-l’)@f(-l'@d"))

= Z; .l‘Af@bf@l‘Af@c(i”)Af@bf
rEZ"

= 2 C(in)Af.

xEZ"
Because each component of the above summation has
either 0 or 27, thus f could not satisfy the definition of
the strict avalanche criterion. O
And also it is easy to see that

[Theorem 2] For n=1, or 2, any bijective function f
from ZF into Z# never satisfy the strict avalanche
criterion.

(Proof) By virtue of Theorem 1 it is sufficient to show
that f is affine. Since if =1 any function from Z, into
Z, is apparently affine, we consider the case #=2 in the
following. When z=2, f can be uniquely represented by

f(z2, 21)= asDa10:® azx:D asz1 7
where a.€Z#(i=0, 1, 2, 3). Thus,
OBV =a
F0)Df(2)=a. (2)
fOBf2)=a:Da:
F2)D/(3)=a:Pas
fDB/3)=a:Das (3)
(0D =aPa:Pas
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Since f is bijective, none of the above six vectors are
zero. From Eq. (2), we observe that a:+0, a.+0,
a:Pa:*0 which means that

{a1, az, (11@(12}:{1, 2, 3}

The facts a1+ as, a:+ as, axPaz+as from Eq. (3)
indicate that as=0. Thus f must be affine. ]

Thus in order to obtain bijective strong S-boxes, we
must treat at least quadratic function of at least three
variables.

3.2 Use of Single Output Strong S-box

When m=1, and n=3 or 4, the experiments tell us
that we can easily generate many strong S-boxes f:
Z#— 7, by random search on an engineering workstation
(SONY NWS810) in a few microseconds. But for the
case of #=5 it becomes rather difficult to efficiently
generate single output strong S-boxes in the same
computational environments.

[Example 1] For #=3 and m=1,

»=[1,0,1,1,1,0,0,0],
<p=[1,1,1,0,0,0,1, 0],
<r>=[1,1,0,1,0,1,0, 0]

are integer representations of strong S-boxes p, ¢ and »
respectively. By complementing the output bit of the
single output strong S-box p, ¢ and 7, we have

H=10,1,0,0,0,1,1, 1],
<g»=[0,0,0,1,1,1,0,1],
<r'>=[0,0,1,0,1,0,1, 1].

It is easy to check that all of these functions are strong
S-boxes.

By the definition of the strict avalanche criterion
and by the above observation, we can readily show the
following.

[Theorem 3] Let g denote an affine function from Z7*
into itself with a permutation matrix A, and an arbi-
trary binary vector bg. Then, a function f: Zi—Z7"
satisfies the strict avalanche criterion if and only if the
composite function gof:Z#—Z3" satisfies the strict ava-
lanche criterion.

(Proof) Since every component of the tuple in the
right-hand side of Eq.( 1) is the same, a permutation of
the output bits of f does not affect whether f satisfies
the strict avalanche criterion. Also, when we comple-
ment any output bit(s) of f, the number of output bits
from 1 to 0 and from 0 to 1 keeps constant. This com-
pletes the proof. O

Given some single output strong S-boxes, we can
generate multiple output strong S-boxes using the idea
summarized in the above theorem. (However, note that
a strong S-box of m=n generated by this method is not
guaranteed to be bijective.)
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[Example 2]  The 3-input 3-output S-box f defined by
Aa)=(r(x), p(x), d'(x))

is strong, i. e., satisfies the strict avalanche criterion.
Since

<ry=[1,1,0,1,0,1,0,0],
pp=[1,0,1,1,1, 0,0, 0],
<g>=[0,0,01,1,1,0, 1],

then, the integer representation of f is
>4 +<p>-2+<g>=[6,4,2,7,3,5 0, 1]

Thus we can conclude this section by describing
that there are no difficulties to efficiently generate many
strong S-boxes up to the 4-bit input case.

4. Enlargement of Strong S-box
4.1 Construction

Next we discuss the expandable properties of
strong S-boxes and present the constructive methods of
generating strong S-boxes of arbitrary # and .

Let us construct (#+1)-bit input S-boxes using #-
bit input S-boxes.

[Definition 6]  For a function f: Z#—Z:, an integer &
&{1, 2, ---, #} and a constant a€Z,, define a function
f[f]: S~ by

710, 2)=r(x)
DA 1A, x)=f(xDci")Da

for all x=Z7.
[Definition 7]  For a function f:Z#—Z7 such that

F(x)=fu(z), farlx), -, i),

and a function ¢ : Z#—Z, and an integer kE(1, 2, ---, n},
define the function E*{g, f1:Z#"—Z#*" by

E*g, fi(y)=(Dlg)w), DIy, DEfril(y), -,
D¢ £ )(w)

for all yeZ4*.

We can show that the constructed S-boxes have nice
properties.
[Theorem 4] If a function f:Zi—Z; satisfies the
strict avalanche criterionthen for any £€{1, 2, -+, n}
and any a€Z,, D f] also satisfies the strict avalanche
criterion.
(Proof) Since f satisfies the strict avalanche criterion,
it holds that

Igzl,,f(x)@f(x@cgn)) -

for any i€(1, 2, -+, n}. Thus it also holds that
EZZ"f(x)@f(x@ci-”))@l
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="~ 2 f(2)Df(xDei”)
=gn_gn-1
:2.‘:*1

To prove the theorem, we denote D[ f] by ¢ and show
that for any 7&{1, 2, -+, n+1}.

,,E%ﬂg(y)@g(y@cwv)=2n
(Case 1) i€(l, 2, -, n.
2, 9B Dg(yDel?)

= 3} 90, 2)Dg(0, z®ei”)
+ B o1, D)De(1, 2@ef")

= 2 f(2)®f(xDe”)
+ B He®d)DD((x®e)Des)Da)

= T f@)@f(x®c)
t 2 f(xDe)Df (2@ et)Deir”

=2- 31 A2)Of (x@ef)

—g.gn1

—on

(Case 2) i=n+1
. S WD yDeii?)

=,2.90, 2)Dg(1, 2)+ 3 ¢(1, 2)Dg(0, x)
=2- 2 90, 2)Dg(1, x)
=2 2 S(2)Df (xDcl")Da

—9.9n-1

—9n
Thus, we complete the proof. O
[Theorem 5]  For a bijection f:Z8—Z#, a function g:
Zi—Z,, and an integer kE{1, 2, -+, n} the function E*[g
f1: Z# ' Z8Y s bijective.
(Proof) By the definition of E*[g, 7] we have for any
.I'EZZn,

E*[g, 110, x)=(g(x), f(x)),
E*g, f1(1, D) =(g(x)P1, f(x)).
For any ucZJ and veZf, let
Alu, v)=E*[g, /)0, WDE*g, f1(0, v),
B(u, v)=E*{g, fI(1, u®c)DE*[g, f1(1, vDc),
C(u, v)=E*g, f1(0, w)®E*[g, fI(1, vP ).

’

We have
Alu, v)=B(u, v)
=(g(wDg(v), F(W)Df(v)),
Clu, v)=((w)Dg(v)D1, f(WDS(v)).

Since f is bijective, f(u)®f(v)=0 if and only if u=wv.
Therefore, if u+v, we have A(u,v)=B(u,v)+(0,0) and
C(u,v)#(0,0). And if u= v, we have A(u, v)=B(u, v)=
(0,0) and C(u, v)=(1, 0)=(0, 0). Thus, A(u, v) and B(u,
v) equals to zero if and only if u=wv, and C (u, v) never
equals to zero for any u and v. These facts show that
for any s€Z7*! and t€ 2", E*[g, f1(s)=E*[g, f1(¢) if
and only if s=¢, in other words, that E*[g, f] is bi-
jective,
[Theorem 6]  If both a bijection £:Z#—Z# and a func-
tion g:Z7'—Z; satisfy the strict avalanche criterion, then
for any integer #<(1, 2, -+, u}, the function E*[g, f]:
741> 73" is a bijection satisfying the strict avalanche
criterion.
(Proof) This theorem follows directly from Theorems
4 and 5. ]
[Remark] Define f; : Zf—Zx(i=1, 2, -+, n) by

F(x)=(fal), fus(Z), -, filx))

from the bijection f:Z/—Z} satisfying the strict ava-
lanche criterion. Noting that f; satisfies the strict ava-
lanche criterion, Theorem 6 tells us that given a bijec-
tion f:Zi—Z7 satisfies the strict avalanche criterion we
can construct a bijection E*[f;, f] | Zf'—>Z#*! satisfy-
ing the strict avalanche criterion using only £. L]

By using these construction methods, we can gener-
ate strong S-boxes in an efficient and systematic way.
Next section we give some examples.

4.2 Examples

Here we give detailed examples to generate strong
S-boxes.
[Example 3] A function f:Z8—Z, which satisfies the
strict avalanche criterion is given as below :

<F=[1,1,0,0,0,1,0,1].

Then,

<DfP=[1,1,0,0,0,1,0,1,1,1,0,0, 1, 0, 1, 0],
<Di[fP=[1,1,0,0,0,1,0,1,0,0,1,1, 0,1, 0, 1].

By Theorem 4, these expanded functions also sat-
isfy the strict avalanche criterion.
[Example 4] When a strong S-box ¢: 78— 7, is [1,0,
0,0,1,1,0,1] and a bijective strong S-box f:Zi—Z$ is
[3,1,4,0,2,5,86, 7],

<Di[¢gP>=[1,0,0,0,1,1,0,1,1,0, 1, 1, 0,0, 0 1]
and

Dol/1>=[3,1,4,0,2,516,7,1,3,0,4,5,2,7, 6].
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By Theorem 6, we can get a strong bijective S-box.
<E'lg, f>=I11, 1, 4, 0, 10, 13, 6, 15, 9, 3, 8, 12, 5, 2,
7, 14].

By the same way, we can get 6-bit input bijective
strong S-boxes,

[4, 53, 16, 57, 43, 45, 2, 6, 12, 55, 63, 33, 8, 26, 30, 51,
37, 20, 41, 0, 61, 59, 22, 18, 39, 28, 49, 47, 10, 24, 35, 14,
21, 36, 25, 48, 13, 11, 38, 34, 23, 44, 1, 31, 58, 40, 19, 62,
52, 5, 32, 9, 27, 29, 50, 54, 60, 7, 15, 17, 56, 42, 46, 3]

and

[36, 21, 48, 57, 43, 45, 2, 38, 12, 23, 63, 1, 8, 58, 30, 19,
37, 20,9, 0, 29, 27, 22, 50, 39, 60, 49, 15, 10, 56, 35, 46,
53, 4, 25, 16, 13, 11, 6, 34, 55, 44, 33, 31, 26, 40, 51, 62,
52, 5,32, 41,59, 61, 18, 54, 28, 7, 47, 17, 24, 42, 14, 3].

Therefore, we can generate arbitrary input size
bijective strong S-boxes if we find 3-bit input bijective
strong S-boxes.

5. Concluding Remarks

We have summarized the cryptographic desired
criteria for S-boxes of symmetric cryptosystems and
proved several interesting theorems of strong S-boxes.
Moreover, we proposed the systematic and efficient
enlargement of bijective S-boxes into an arbitrary input
size.

Next problem is when we combine the generated
strong S-boxes with a permutation, to design the crypto-
graphically desirable permutation.

Acknowledgement

The first author is supported in part by Electronics
and Telecommunications Research Institute.

References

(1) C. E. Shannon: “Communication theory of secrecy sys-
tems”, BST]J, 28, pp. 656-715(0ct. 1949).

(2) “Data encryption standard”, National Bureau of Standards,
Federal Information Processing Standard, 46, U. S. A. (Jan.
1977).

(3) S. Miyaguchi, A. Shiraishi and A. Shimizu: “Fast data
encryption algorithm FEAL-8”, Electr. Comm. Lab. Tech.
J., NTT, 37, 4/5, pp. 321-327(1988).

(4) J. B. Kam and G. I. Davida: “Structured design of
substitution-permutation encryption network”, IEEE
Trans. Comput., C-28, 10, pp. 747-753 (Oct. 1979).

(5) A. F. Webster and S. E. Tavares: “On the design of S-
boxes”, Proc. of CRYPT(’85, Springer(1985).

(6) H. Feistel: “Cryptography and computer privacy”,
Scientific American, 228, 5, pp. 15-23(1973).

(7) R. Forré: “The strict avalanche criterion: spectral prop-

1035

erties of Boolean functions and an extended definition”,
Proc. of CRYPT(’88(1938).

(8) S. Lloyd: “Counting functions satisfying a higher order
strict avalanche criterion”, Proc. of EUROCYRPT’89
(1989).

(9) J.A Gordon and H. Retkin: “Are big S-boxes best ?”, IEEE
workshop on computer security, pp. 257-262(1981).

(10) F. Ayoub: “Probabilistic completeness of substitution-
permutation encryption networks”, IEE, 129, E, 5, pp. 195-
199 (Sept. 1982).

(11) M. Hellman, R. Merkle, R. Schroeppel, L. Washington, W.
Diffie, S. Pohlig and P. Schweitzer : “Results of an initial
attempt to analyze the NBS data encryption standard”,
Information Systems Laboratory Report, Stanford Univer-
sity (1976).

Kwangjo Kim was born in Kwangwon,
Korea on April 10, 1956. He received the
B. Eng. and M. Eng. degrees in electronic
engineering from Yonsei University,
Seoul,Korea in 1980 and 1983 respectively.
Since 1980, he has been with Electronics
and Telecommunications Research Insti-
tute, Daejeon, Korea. By ETRI’s program,
he is currently a candidate for the Ph. D
under the supervision of Professor Hideki
Imai. His research interests include
cryptography, communication security and their applications. He
is a member of IEE of Japan and KITE of Korea.

Tsutomu Matsumoto was born in
Maebashi, Japan, on October 20, 1958. He
received the B. Eng. and M. Eng. degrees
in computer eng. both from Yokohama
National University, Yokohama, Japan, in
1981 and 1983, respectively, and Ph. D.
degree in electronic eng. from The Univer-
sity of Tokyo, Tokyo, Japan, in 1986.
From 1986 to 1989, he was a Lecturer for
Electrical and Computer Engineering at
Yokohama National University. Since
1989, he has been an Associate Professor and is currently working
in cryptography, complexity theory, computational mathematics,
and their applications to information security. Dr. Matsumoto is a
member of ACM, JACR, IEEE, IPS], ITA and Akarui Angou
Kenkyu-kai.

Hideki Imai was born in Shimane,
Japan on May 31, 1943. He received the B.
E., M. E. and Ph. D. degrees in electrical
engineering from University of Tokyo,
Tokyo, in 1966, 1968 and 1971, respective-
ly. He is currently a Professor in the
Division of Electrical and Computer
Engineering, Yokohama National Univer-
sity, Yokohama. His current research
interests include information theory, cod-
ing theory, cryptography and their appli-
cations. He is the author of three books and coauthor of several
books. Dr. Imai is a member of IEEE, IEE of Japan, IPS of Japan,
SITA of Japan, and ITE of Japan.



