Week 6: Mode of Operation

Recommendation for Block Cipher Modes of Operation

NIST 800-38A, 2001

Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, NIST-800-38D, 2007
Modes of Operation – ECB Mode(1/2)

- **Electronic Code Book Mode**
 - Break a message into a sequence of plaintext blocks
 - Each plaintext block is encrypted (or decrypted) independently
 - The same plaintext block always produces the same ciphertext block
 - May not be secure; e.g., a highly structured message
 - Typically used for secure transmission of single values (e.g., encryption key)
Modes of Operation – ECB Mode(2/2)

(Step 1) A & B agreed to use E() and K each other beforehand

Alice

P_1

K → E → C_1

P_2

E → C_2

... → ...

P_n

E → C_n

Bob

C_1

K → D → P_1

C_2

D → P_2

... → ...

C_n

D → P_n

(Step 2) A wants to send a block of P to B and divides P into equal block P_i

A & B agreed to use E() and K each other beforehand

A wants to send a block of P to B and divides P into equal block P_i
Modes of Operation – CBC Mode (1/2)

Cipher Block Chaining Mode

- Each ciphertext block is affected by previous blocks
- No fixed relationship between the plaintext block and its input to the encryption function
- The same plaintext block, if repeated, produces different ciphertext blocks
- IV (Initializing Vector) must be known to both ends
- Most widely used for block encryption

\[C_1 = E_K(P_1 \oplus IV) \]
\[P_1 = IV \oplus D_K(C_1) \]
\[C_2 = E_K(P_2 \oplus C_1) \]
\[P_2 = C_1 \oplus D_K(C_2) \]
\[C_3 = E_K(P_3 \oplus C_2) \]
\[P_3 = C_2 \oplus D_K(C_3) \]
\[C_4 = E_K(P_4 \oplus C_3) \]
\[P_4 = C_3 \oplus D_K(C_4) \]
Modes of Operation – CBC Mode (2/2)

Alice

Bob
Modes of Operation – Ctr Mode

Parallel Operation
Unique Counter
Variation of CBC
Stream Cipher

- **Overview**
 - Originate from *one-time pad*
 - *bit-by-bit Exor* with pt and key stream \((c_i = m_i \oplus z_i) \)
 - Encryption = Decryption --> Symmetric
 - Use **LFSR** (Linear Feedback Shift Register)
 - (external) Synchronous or self-synchronous

- **Properties**
 - *Faster and Low Complexity in H/W* --> *Lightweight !*
 - Security measure : Period of key stream, LC(Linear Complexity), Statistical properties
 - Vast amounts of theoretical knowledge
 - Proprietary and Confidential for Military
How LFSR works

- Notation: \(< L, C[D]\) > where connection polynomial

 \[C[D] = 1 + c_1 D + c_2 D^2 + \ldots + c_L D^L \in \mathbb{Z}_2[D] \]

- If \(c_L = 1\), \{i.e., \(\text{deg}\{C[D]\} = L\}\}, \(C[D]\) is called a nonsingular polynomial

- If initial vector \(\sigma_0\) is \([s_{L-1}, \ldots, s_1, s_0]\), \(s_i = \{0, 1\}\), output sequence \(s = s_0, s_1, \ldots\) is uniquely determined by the recursion

 \[s_j = (c_1 s_{j-1} + c_2 s_{j-2} + \ldots + c_L s_{j-L}) \mod 2, \ j \geq L \]

- (Ex) \(<4, 1 + D + D^4>\), \(\sigma_0 = [0, 1, 1, 0] \Rightarrow c_1 = 1, c_4 = 1, s_4 = s_3 + s_0\)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(D_3)</th>
<th>(D_2)</th>
<th>(D_1)</th>
<th>(D_0)</th>
<th>(t)</th>
<th>(D_3)</th>
<th>(D_2)</th>
<th>(D_1)</th>
<th>(D_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Output seq. = 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1
Synchronous Stream Cipher (1/2)

- \(f \): next state ft, \(\sigma_{i+1} = f(\sigma_i, k) \), \(\sigma_0 \): initial value
- \(g \): keystream generating ft (e.g., LFSR or Block Cipher)
- \(z_i = g(\sigma_i, k) \), \(k \): key
- \(h \): output ft, \(c_i = h(z_i, m_i) \), \(m_i \): pt, \(z_i \): key stream, \(c_i \): ct

Encryption

\[
\begin{align*}
\sigma_i & \rightarrow f \rightarrow \sigma_{i+1} \\
& \leftarrow k \\
& \leftarrow g \\
m_i & \rightarrow h \\
& \rightarrow c_i \\
& \leftarrow z_i
\end{align*}
\]

Decryption

\[
\begin{align*}
\sigma_i & \rightarrow f \rightarrow \sigma_{i+1} \\
& \leftarrow k \\
& \leftarrow g \\
z_i & \rightarrow h^{-1} \\
& \leftarrow c_i \\
c_i & \rightarrow m_i
\end{align*}
\]
Synchronous Stream Cipher(2/2)

• Keystream is independent of pt and ct
• Properties
 – Synchronization requirement
 – No error propagation
 – Active attack
 • Insertion, deletion or replay will lose synchronization
 • Change selected ciphertext digits ➔ Need to have integrity check mechanisms
Self-Sync. Stream Cipher (1/2)

- \(\sigma_i = (c_{i-t}, c_{i-t+1}, \ldots, c_{i-1}) \), \(\sigma_0 = (c_{t}, c_{t+1}, \ldots, c_{t}) \): initial value
- \(g \): keystream generating ft, (e.g., LFSR or Block Cipher)
- \(z_i = g(\sigma_i, k), k \): key
- \(h \): output ft, \(c_i = h(z_i, m_i), m_i \): pt, \(z_i \): keystream, \(c_i \): ct

![Diagram showing encryption and decryption processes.](image)
Self-Sync. Stream Cipher (2/2)

• Keystream is dependent of pt and ct
• Properties
 – Self-Synchronization
 – Limited error propagation
 – Active attack
 • Difficult to detect insertion, deletion, or replay
 • Easy to find passive modification
 – More diffusion ➔ more resistant against attacks based on plaintext redundancy
OFB Mode = Sync. Stream cipher

The structure is similar to that of CFB, but:
- CFB: Ciphertext is fed back to the shift register
- OFB: Output of E is fed back to the shift register

For security reason, only the full feedback (j = block size) mode is used.

- No error propagation
- More vulnerable to a message stream modification attack
- May useful for secure transmission over noisy channel (e.g., satellite communication)
CFB Mode = Self-sync stream cipher

 Cipher Feedback Mode

- A way of using a block cipher as a stream cipher
- A shift register of block size maintains the current state of the cipher operation, initially set to some IV
- The value of the shift register is encrypted using key K and the leftmost j bits of the output is XORed with j-bit plaintext P_i to produce j-bit ciphertext C_i
- The value of the shift register is shifted left by j bits and the C_i is fed back to the rightmost j bits of the shift register
- Typically $j = 8, 16, 32, 64$...
- Decryption function D_K is never used
Mode of Operation - CCM
Mode of operation - summary

• Use of mode
 – ECB: key management, useless for file encryption
 – CBC: File encryption, useful for MAC
 – m-bit CFB: self-sync, impossible to use channel with low BER
 – m-bit OFB: external-sync. $m=1,8$ or n
 – Ctr: secret ctr, parallel computation
 – CCM: authenticated encryption = ctr + CBC
 – Performance Degradation/ Cost Tradeoff