Week 10 -11 : Public Key Cryptosystem and Digital Signatures
1. Public Key Encryptions
RSA, ElGamal,
RSA- PKC(1/3)

- 1st public key cryptosystem
- Believed to be secure if IFP is hard and worldwide standard for last 30 years
RSA- PKC(2/3)

- **Key generation (KeyGen)**
 - Select two large (1,024 bits or larger) primes \(p, q \)
 - Compute modulus \(n = pq \), and \(\phi(n) = (p-1)(q-1) \)
 - Pick an integer \(e \) relatively prime to \(\phi(n) \), \(\gcd(e, \phi(n)) = 1 \)
 - Compute \(d \) such that \(ed = 1 \mod \phi(n) \) How??
 - Public key \((n, e)\) : public
 - Private key \(d\) : keep secret (may hold \(p \) and \(q \) securely.)

- **Encryption(Enc) / Decryption (Dec)**
 - E: \(C = M^e \mod n \) for \(0 < M < n \)
 - D: \(M = C^d \mod n \)
 - Proof) \(C^d = (M^e)^d = M^{ed} = M^{k\phi(n) + 1} = M \{M^{\phi(n)}\}^k = M \)

- **Special Property**
 - \((M^e \mod n)^d \mod n = (M^d \mod n)^e \mod n\) for \(0 < M < n \)
RSA as Trapdoor One-way Function

Message M \rightarrow Ciphertext $C = f(M) = M^e \mod n$

Ciphertext C \rightarrow Private key (trapdoor information) \rightarrow Message $M = f^{-1}(C) = C^d \mod n$

Public key

$n = pq$ (p & q: primes)

$ed = 1 \mod (p-1)(q-1)$
RSA - PKC (3/3)

• Key Generation
 – \(p = 3, \ q = 11 \)
 – \(n = pq = 33, \ \phi(n) = (p-1)(q-1) = 2 \times 10 = 20 \)
 – \(e = 3 \) s.t. \(\gcd(e, \ \phi(n)) = (3, 20) = 1 \)
 – Choose \(d \) s.t. \(ed = 1 \mod \phi(n) \), \(3d = 1 \mod 20 \), \(d = 7 \)
 – Public key \(= \{e, n\} = \{3, 33\} \), private key \(= \{d\} = \{7\} \)

• Encryption
 – \(M = 5 \)
 – \(C = M^e \mod n = 5^3 \mod 33 = 26 \)

• Decryption
 – \(M = C^d \mod n = 26^7 \mod 33 = 5 \)
Exercise

Let’s practice RSA key generation, encryption, and decryption

1) p=5, q=7 (by hand calculation, Quiz!!) if M=3
2) p=2,357, q=2,551 (using big number calculator) if M=5,000
3) p=885,320,963, q=238,855,417 (using big number calculator) if M=10,000

1. Key generation

2. Encryption

3. Decryption
Selecting Primes p and q

- Idea: Prevent from feasible factorization

 1. $|p| \approx |q|$ to avoid ECM (Elliptic Curve Method for factoring)

 2. $p-q$ must be large to avoid trial division

 3. p and q are strong prime
 - $p-1$ has large prime factor r (Pollard’s $p-1$)
 - $p+1$ has large prime factor (William’s $p+1$)
 - $r-1$ has large prime factor (Cyclic attack)
Integer Factorization Problem (IFP)

- Problem: Given a composite number n, find its prime factors

 - Application: Used to construct RSA-type public key cryptosystems

- (Probabilistic sub-exponential) Algorithms to solve IFP
 - Quadratic sieve
 - General Number Field Sieve
 - etc.
Quadratic Sieve (1/3)

- Factor n (=pq) using the quadratic sieve algorithm

- Basic principle:
 Let n be an integer and suppose there exist integers x and y with
 \(x^2 = y^2 \pmod{n} \), but \(x \neq \pm y \pmod{n} \). Then \(\gcd(x-y, n) \) gives a
 nontrivial factor of n.

- Example
 Consider n=77
 72=-5 mod 77, 45=-32 mod 77
 72*45 = (-5)*(-32) mod 77
 \(2^3*3^4*5 = 2^5*5 \pmod{77} \)
 \(9^2 = 2^2 \pmod{77} \)
 \(\gcd(9-2,77)=7, \gcd(9+2,77)=11 \)
 77=11*7 Factorization
Quadratic Sieve (2/3)

Example: factor \(n = 3837523 \).

Observe
\[
\begin{align*}
9398^2 &= 5^5 \times 19 \pmod{3837523} \\
19095^2 &= 2^2 \times 5 \times 11 \times 13 \times 19 \pmod{3837523} \\
1964^2 &= 3^2 \times 13^3 \pmod{3837523} \\
17078^2 &= 2^6 \times 3^2 \times 11 \pmod{3837523}
\end{align*}
\]

Then, we have
\[
(9398 \times 19095 \times 1964 \times 17078)^2 = (2^4 \times 3^2 \times 5^3 \times 11 \times 13^2 \times 19)^2 \pmod{3837523}
\]
\[
2230387^2 = 2586705^2 \pmod{3837523}
\]
Compute \(\text{gcd}(2230387-2586705, 3837523) \Rightarrow 1093 \pmod{3837523} \)
\[
3837523 / 1093 = 3511 \pmod{3837523}
\]

\(3837523 = 1093 \times 3511 \) \(\Leftarrow \) Note that Verification is easy !!
Quadratic Sieve (3/3)

1. Initialization: a sequence of quadratic residues $Q(x) = (m+x)^2 - n$ is generated for small values of x where $m = \lfloor \sqrt{n} \rfloor$.

2. Forming the factor base: the base consists of small primes. $FB = \{-1, 2, p_1, p_2, \ldots, p_{t-1}\}$

3. Sieving: the quadratic residues $Q(x)$ are factored using the factor base till t full factorizations of $Q(x)$ have been found.

4. Forming and solving the matrix: Find a linear combination of $Q(x)$’s which gives the quadratic congruence. The congruence gives a nontrivial factor of n with the probability $\frac{1}{2}$.

http://www.answers.com/topic/quadratic-sieve?cat=technology
General Number Field Sieve (GNFS)

- Most efficient algorithm known for factoring integers larger than 100 digits.
- Asymptotic running time: sub-exponential

\[L_n \left[\frac{1}{3}, 1.526 \right] = O \left(e^{(1.526 + o(1))(\ln n)^{1/3} (\ln \ln n)^{2/3}} \right) \]

Complexity of algorithm

\[L_n [\alpha, c] = O \left(e^{c (\ln n)^{\alpha} (\ln \ln n)^{1-\alpha}} \right) \]

- If \(\alpha = 0 \), polynomial time algorithm
- If \(\alpha \geq 1 \), exponential time algorithm
- If \(0 < \alpha < 1 \), sub-exponential time algorithm
RSA Challenge

<table>
<thead>
<tr>
<th>Digits</th>
<th>Year</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA-100</td>
<td>'91.4. 7</td>
<td>Q.S.</td>
</tr>
<tr>
<td>RSA-110</td>
<td>'92.4. 75</td>
<td>Q.S.</td>
</tr>
<tr>
<td>RSA-120</td>
<td>'93.6. 830</td>
<td>Q.S.</td>
</tr>
<tr>
<td>RSA-129</td>
<td>'94.4.(AC94) 5,000</td>
<td>Q.S.</td>
</tr>
<tr>
<td>RSA-130</td>
<td>'96.4.(AC96) ?</td>
<td>NFS</td>
</tr>
<tr>
<td>RSA-140</td>
<td>'99.2 (AC99) ?</td>
<td>NFS</td>
</tr>
<tr>
<td>RSA-155</td>
<td>'99.8 8,000</td>
<td>GNFS</td>
</tr>
<tr>
<td>RSA-160</td>
<td>'03.1</td>
<td>Lattice Sieving+HW</td>
</tr>
<tr>
<td>RSA-174</td>
<td>'03.12</td>
<td>Lattice Sieving +HW</td>
</tr>
<tr>
<td>RSA-200</td>
<td>'05.5</td>
<td>GNFS+HW</td>
</tr>
</tbody>
</table>

MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 \times 10^{13} \text{ instruction}.

• Expectation: 1,024-bit by 2018 !!!!*
We have factored RSA-200 by GNFS.

The factors are:

\[p = 3532461934402770121272604978198464368671197400197625023649303468776121253679423200058547956528088349 \]

\[q = 7925869954478333033347085841480059687737975857364219960734330341455767872818152135381409304740185467 \]

http://www.loria.fr/~zimmerma/records/rsa200
RSA-232 (768 bit)

Factorization of a 768-bit RSA modulus

version 1.21, January 13, 2010

Thorsten Kleinjung1,
Kazumaro Aoki2, Jens Franke3, Arjen K. Lenstra1, Emmanuel Thomé4,
Joppe W. Bos1, Pierrick Gaudry4, Alexander Kruppa4, Peter L. Montgomery5,6,
Dag Arne Osvik1, Herman te Riele6, Andrey Timofeev6, and Paul Zimmermann4

1 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
3 University of Bonn, Department of Mathematics, Beringstraße 1, D-53115 Bonn, Germany
4 INRIA CNRS LORIA, Équipe CARAMEL - bâtiment A, 615 rue du jardin botanique,
5 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
6 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

using the hard disk and one core on
compute the exponents of all prime
quare root using the implementation
ex-core processor. The first one (and
20:16 GMT on December 12, 2009:

1770479498371376856891
1743087737814467999489
3227915816434308764267
3810270092798736308917.
ctorizations of the factors ±1 can be

\textbf{Abstract}. This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.

\textbf{Keywords}: RSA, number field sieve
Security of RSA (1/2)

- Common Modulus attack:
 - If multiple entities share the same modulus \(n=pq \) with different pairs of \((e_i, d_i)\), this is not secure.

 Do not share the same modulus!

- Cryptanalysis: If the same message \(M \) was encrypted to different users

 User \(u_1 \) : \(C_1 = M^{e_1} \mod n \)

 User \(u_2 \) : \(C_2 = M^{e_2} \mod n \)

 If \(\gcd(e_1, e_2) = 1 \), there are \(a \) and \(b \) s.t. \(ae_1 + be_2 = 1 \mod n \) then,

 \[
 (C_1)^a(C_2)^b \mod n = (M^{e_1})^a(M^{e_2})^b \mod n = M^{ae_1+be_2} \mod n = M \mod n
 \]
Security of RSA(2/2)

❖ Cycling attack

If \(f(f(\ldots f(M))) = f(M) \) where \(f(M) = M^e \mod n \)?
If a given ciphertext appears after some iterations, we can recover the plaintext at collusion point.

E.g., Let \(C = M^e \mod n \)

If \((((C^e)^e)^e) \mod n = C^{e^k} \mod n = C \),
then \(C^{e^{k-1}} \mod n = M \) for some \(k \).

❖ Multiplicative attack (homomorphistic property of RSA)

\((M_1^e) \times (M_2^e) \mod n = (M_1 \times M_2)^e \mod n \)
Security of PKC

- Security goals
 - One-wayness (OW): the adversary who sees a ciphertext is not able to compute the corresponding message.
 - Indistinguishability (IND): observing a ciphertext, the adversary learns nothing about the plaintext. Also known as semantic security.
 - Non-malleability (NM): observing a ciphertext for a message m, the adversary cannot derive another ciphertext for a meaningful plaintext m' related to m.

- Original RSA encryption is not secure since
 - IND: deterministic encryption
 - NM: for example, from $c=m^e$, $c'=2^e c = (2m)^e$ is easily obtained. It cannot be used in bidding scenario.
Formal Definition of IND

\[b \in \mathbb{R}\{0,1\} \]

Challenge: \(C = E(m_b) \)

The adversary wins if he guesses \(b \) correctly with a probability significantly greater than \(\frac{1}{2} \).
Security Def. of PKC

- Assume the existence of Decryption Oracle
 - Mimics an attacker’s access to the decryption device

- Attacking Method
 - Chosen Plaintext Attack (CPA): the adversary can encrypt any plaintext of his choice. In PKC, this is always possible.
 - Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker has access to the decryption oracle before he sees a ciphertext that he wishes to manipulate (aka. lunchtime attack)
 - Adaptive Chosen Ciphertext Attack (CCA2): the attacker has access to the decryption oracle before and after he sees a ciphertext c that he wishes to manipulate (but, he is not allowed to query the oracle about the target ciphertext c.)
Making RSA to IND-CCA2

- **RSA encryption without padding**
 - Deterministic encryption
 - Multiplicative property: \(m_1^e \cdot m_2^e = (m_1m_2)^e \mod n \)
 - Many attacks possible
 - Redundancy checking is required

- **RSA encryption with OAEP**
 - RSA encryption after OAEP (Optimal Asymmetric Encryption Padding)
 - Proposed by Bellare and Rogaway
 - Probabilistic encoding of message before encryption
 - RSA becomes a probabilistic encryption
 - Secure against IND-CCA2
RSA with OAEP

- **OAEP → RSA encryption**

 \[
 \begin{align*}
 s &= m \oplus G(r) \\
 t &= r \oplus H(s) \\
 c &= E(s, t)
 \end{align*}
 \]

 Encryption padding

 RSA encryption

- **RSA decryption → OAEP**

 \[
 \begin{align*}
 (s, t) &= D(c) \\
 r &= t \oplus H(s) \\
 m &= s \oplus G(r)
 \end{align*}
 \]

 RSA decryption

 Decryption padding

(Note) OAEP looks like a kind of Feistel network
PKCS #1 v2.0, v2.1..
Diffie-Hellman / ElGamal-type Systems

- **Domain parameter generation**
 - Based on the hardness of DLP
 - Generate a large (1,024 bits or larger) prime p
 - Find generator g that generates the cyclic group \mathbb{Z}_p^*
 - Domain parameter = \{\(p, g\)\}

- **Key generation**
 - Pick a random integer $x \in [1, p-1]$
 - Compute $y = g^x \mod p$
 - Public key (\(p, g, y\)) : public
 - Private key x : keep secret

- **Applications**
 - Public key encryption
 - Digital signatures
 - Key agreement
Discrete Logarithm Problem (DLP)

- Problem:
 Given g, y, and prime p, find an integer x, if any, such that $y = g^x \mod p \ (x = \log_g y)$

- Application: Used to construct Diffie-Hellman & ElGamal-type public key systems: DH, DSA, KCDSA ...

- Algorithms to solve DLP:
 - Shank’s Baby Step Giant Step
 - Index calculus
Shank’s Baby Step, Giant Step algorithm

➢ Problem: find an integer \(x \), if any, such that \(y = g^x \mod p \) \((x=\log_g y)\)

➢ Algorithm

1. Choose an integer \(N = \lceil \sqrt{p-1} \rceil \)
2. Computes \(g^j \mod p \), for \(0 \leq j < N \)
3. Computes \(yg^{-Nk} \mod p \), for \(0 \leq k < N \)
4. Look for a match between the two lists. If a match is found,
 \[g^j = yg^{-Nk} \mod p \]
 Then \(y = g^x = g^{j+Nk} \)

We solve the DLP. \(x = j + Nk \)
Index Calculus (1/2)

Problem: find an integer x, if any, such that $y = g^x \mod p$ ($x=\log_g y$)

Algorithm

1. Choose a factor base $S = \{p_1, p_2, \ldots p_m\}$ which are primes less than a bound B.
2. Collect linear relations
 1. Select a random integer k and compute $g^k \mod p$
 2. Try to write g^k as a product of primes in S

$$g^k = \prod_i p_i^{a_i} \mod p, \text{ then } k = \sum_i a_i \log_p p_i \mod p - 1$$

3. Find the logarithms of elements in S solving the linear relations
4. Find x
 For a random r, compute $yg^r \mod p$ and try to write it as a product of primes in S.

$$yg^r = \prod_i p_i^{b_i} \mod p, \text{ then } x = -r + \sum_i b_i \log_p p_i \mod p - 1$$
Index Calculus (2/2)

- Example: Let $p=131$, $g=2$, $y=37$. Find $x=\log_2{37 \mod 131}$

- Solution

 Let $B=10$, $S=\{2,3,5,7\}$

 $2^1 = 2 \mod 131$
 $2^8 = 5^3 \mod 131$
 $2^{12} = 5 \times 7 \mod 131$
 $2^{14} = 3^2 \mod 131$
 $2^{34} = 3 \times 5^2 \mod 131$

 $1 = \log_2{2 \mod 130}$
 $8 = 3 \times \log_2{5 \mod 130}$
 $12 = \log_2{5} + \log_2{7 \mod 130}$
 $14 = 2 \times \log_2{3 \mod 130}$
 $34 = \log_2{3} + 2 \times \log_2{5 \mod 130}$

 $\log_2{2} = 1$
 $\log_2{5} = 46$
 $\log_2{7} = 96$
 $\log_2{3} = 72$

 $37 \times 2^{43} = 3 \times 5 \times 7 \mod 131$
 $\log_2{37} = -43 + \log_2{3} + \log_2{5} + \log_2{7 \mod 130} = 41$

 Solution: $2^{41} \mod 131 = 37$

- Complexity of best known algorithm for solving DLP:

 $$L_p \left[\frac{1}{3}, 1.923 \right] = O \left(e^{\left(1.923 + o(1) \right) \left(\ln p \right)^{\frac{1}{3}} \left(\ln \ln p \right)^{\frac{2}{3}}} \right)$$
ElGamal Encryption Scheme

- **Keys & parameters**
 - Domain parameter = \(\{p, g\} \)
 - Choose \(x \in [1, p-1] \) and compute \(y = g^x \mod p \)
 - Public key \((p, g, y)\)
 - Private key \(x\)

- **Encryption: \(m \to (C_1, C_2) \)**
 - Pick a random integer \(k \in [1, p-1] \)
 - Compute \(C_1 = g^k \mod p \)
 - Compute \(C_2 = m \times y^k \mod p \)

- **Decryption**
 - \(m = C_2 \times C_1^{-x} \mod p \)
 - \(C_2 \times C_1^{-x} = (m \times y^k) \times (g^k)^{-x} = m \times (g^x)^k \times (g^k)^{-x} = m \mod p \)
Key Generation
- Let p = 23, g = 7
- Private key x = 9
- Public key y = \(g^x \mod p = 7^9 \mod 23 = 15 \)

Encryption: m \(\rightarrow \) (\(C_1 \), \(C_2 \))
- Let m = 20
- Pick a random number k = 3
- Compute \(C_1 = g^k \mod p = 7^3 \mod 23 = 21 \)
- Compute \(C_2 = m \times y^k \mod p = 20 \times 15^3 \mod 23 = 20 \times 17 \mod 23 = 18 \)
- Send (\(C_1 \), \(C_2 \)) = (21, 18) as a ciphertext

Decryption
- \(m = C_2 / C_1^x \mod p = 18 / 21^9 \mod 23 = 18 / 17 \mod 23 = 20 \)
2. Digital Signatures

RSA, ElGamal, DSA, KCDSA, Schnorr
Digital Signature

- When do you use Digital Signature?
 - Electronic version of handwritten signature on electronic document
 - Signing using private key (only by the signer)
 - Verification using public key (by everyone)

- Hash then sign: $\text{sig}(h(m))$
 - Efficiency in computation and communication
Requirement of DS

- Security requirements for digital signature
 - Unforgeability (위조 방지)
 - User authentication (사용자 인증)
 - Non-repudiation (부인 방지)
 - Unalterability (변조 방지)
 - Non-reusability (재사용 방지)

- Services provided by digital signature
 - Authentication
 - Data integrity
 - Non-Repudiation
Signing & Verification

✓ Combine Hash with Digital Signature and use PKC
✓ Provide Authentication and Non-Repudiation
✓ (Ex.) RSA, ElGamal DSA, KCDSA, ECDSA, EC-KCDSA
Security of Digital Signature

- **Forgery**
 - **Total break**: adversary is able to find the secret for signing, so he can forge then any signature on any message.
 - **Selective forgery**: adversary is able to create valid signatures on a message chosen by someone else, with a significant probability.
 - **Existential forgery**: adversary can create a pair (message, signature), s.t. the signature of the message is valid.

- **Attacking**
 - **Key-only attack**: Adversary knows only the verification function (which is supposed to be public).
 - **Known message attack**: Adversary knows a list of messages previously signed by Alice.
 - **Chosen message attack**: Adversary can choose what messages wants Alice to sign, and he knows both the messages and the corresponding signatures.
RSA-Signing

- **Key generation**
 - Choose two large (512 bits or more) primes p & q
 - Compute modulus $n = pq$, and $\phi(n) = (p-1)(q-1)$
 - Pick an integer e relatively prime to $\phi(n)$, $\text{gcd}(e, \phi(n)) = 1$
 - Compute d such that $ed = 1 \mod \phi(n)$
 - Public key (n, e): publish
 - Private key d: keep secret (may keep p and q securely.)

- **Signing / Verifying**
 - S: $s = m^d \mod n$ for $0 < m < n$
 - V: $m =? s^e \mod n$
 - S: $s = h(m)^d \mod n$ --- hashed version
 - V: $h(m) =? s^e \mod n$

- **RSA signature without padding**
 - Deterministic signature, no randomness introduced
Forging RSA-signature

- RSA signature forgery: Attack based on the multiplicative property of RSA.
 \[y_1 = (m_1)^d \quad y_2 = (m_2)^d, \]
 then \((y_1 y_2)^e = m_1 m_2 \)
 Thus, \(y_1 y_2 \) is a valid signature of \(m_1 m_2 \)

- This is an existential forgery using a known message attack.

- (HW) RSA-PSS required like RSA-OAEP
ElGamal Signature

- **Keys & parameters**
 - Domain parameter = \{p, g\}
 - Choose \(x \in [1, p-1] \) and compute \(y = g^x \mod p \)
 - Public key (p, g, y)
 - Private key x

- **Signature generation**: (r, s)
 - Pick a random integer \(k \in [1, p-1] \)
 - Compute \(r = g^k \mod p \)
 - Compute \(s \) such that \(m = xr + ks \mod p-1 \)

- **Signature verification**
 - \(y^r r^s \mod p =? g^m \mod p \)
 - If equal, accept the signature (valid)
 - If not equal, reject the signature (invalid)
Digital Signature Algorithm (DSA)

Private: \(x \)
Public: \(p, q, g, y \)

- **Signing**

 Pick a random \(k \) s.t. \(0 < k < q \)

 \[
 r = (g^k \mod p) \mod q \\
 s = k^{-1}(\text{SHA1}(m) + xr) \mod q
 \]

- **Verifying**

 \[w = s^{-1} \mod q \]

 \[
 u1 = \text{SHA1}(m) \times w \mod q \\
 u2 = r \times w \mod q \\
 v = (g^{u1} \times y^{u2} \mod p) \mod q \\
 v =? r
 \]
KCDSA

| Private: | x |
| Public: | p, q, g, y |

$z = h(Cert_Data)$

$p : 768 + 256k$ (k=0 ~ 5) bit prime
$q : 160 + 32k$ (k=0~3) bit prime, $q \mid p-1$
$g : \text{generator of order } q$
$x : 0 < x < q$
$y = g^{x'} \mod p, x' = x^{-1} \mod q$

Signing

Pick a random k s.t. $0 < k < q$

\[
\begin{align*}
 r &= \text{HAS160}(g^k \mod p) \\
 e &= r \oplus \text{HAS160}(z \ || \ m) \\
 s &= x(k - e) \mod q
\end{align*}
\]

Verifying

\[
\begin{align*}
 e &= r \oplus \text{HAS160}(z \ || \ m) \\
 v &= y^s \cdot g^e \mod p \\
 \text{HAS160}(v) &= r
\end{align*}
\]
Schnorr Signature Scheme

- **Domain parameters**
 - \(p \) = a large prime (~size 1024 bit), \(q \) = a prime (~size 160 bit)
 - \(q \) = a large prime divisor of \(p-1 \) (\(q \mid p-1 \))
 - \(g \) = an element of \(\mathbb{Z}_p \) of order \(q \), i.e., \(g \neq 1 \) & \(g^q = 1 \mod p \)
 - Considered in a subgroup of order \(q \) in modulo \(p \)

- **Keys**
 - Private key \(x \in_R [1, q-1] \): a random integer
 - Public key \(y = g^x \mod p \)

- **Signature generation**: \((r, s)\)
 - Pick a random integer \(k \in_R [1, q-1] \)
 - Compute \(r = h(g^k \mod p, m) \)
 - Compute \(s = k - xr \mod q \)

- **Signature verification**
 - \(r =? h(y^r g^s \mod p, m) \)
Advanced Digital Signature

• Blind signature
• One-time signature
 – Lamport scheme or Bos-Chaum scheme
• Undeniable signature
 – Chaum-van Antwerpen scheme
• Fail-stop signature
 – van Heyst-Peterson scheme
• Proxy signature
• Group (Ring) signature: group member can generate signature if dispute occurs, identify member. etc.
Blind Signature(I)

Without B seeing the content of message M, A can get a signature of M from B.

RSA scheme, B’s public key : {n, e}, private key : {d}

(1) random number
(2) blinding
(3) signing
(4) unblinding

A (customer) B (Bank)

(1) select random k
s.t. \(\gcd(n, k) = 1 \),
\(1 < k < n - 1 \)

(2) \(m^* = m^e k \mod n \)

(3) \(s^* = (m^*)^d \mod n \)

(4) \(s = k^{-1} s^* \mod n \)

(signature of M by B : \(k^{-1} (m^e)^d = k^{-1} m^e k^d = m^d \))

\(f(m) : \text{blinded message} \)
Blind Signature(II)

(Preparation) \(p=11, q=3, n=33, \phi(n)= 10 \times 2 = 20 \)
\[
gcd(d, \phi(n))=1 \implies d=3, \quad ed = 1 \mod \phi(n) \implies 3d = 1 \mod 20 \implies e=7
\]
B: public key :\{n,e\}=\{33,7\}, private key =\{d\}=\{3\}

(1) A’s blinding of \(m=5 \)
 - select \(k \) s.t. \(\gcd(k,n)=1. \ \gcd(k,33)=1 \implies k=2 \)
 - \(m^* = m^k \mod n = 5^2 \mod 33 = 640 \mod 33 = 13 \mod 33 \)

(2) B’s signing without knowing the original \(m \)
 - \(s^* = (m^*)^d \mod n = 13^3 \mod 33 = 2197 \mod 33 = 19 \mod 33 \)

(3) A’s unblinding
 - \(s=k^{-1} s^* \mod n \) (\(2k^{-1}=1 \mod 33 \implies k=17 \))
 - \(17 \times 19 \mod 33 = 323 = 26 \mod 33 \)

* Original Signature : \(m^d \mod n = 5^3 \mod 33 = 125 = 26 \mod 33 \)
3. Key Exchange

Diffie-Hellman
DH Key Agreement

Domain Parameters:
\(p, g \)

Choose
\(X_a \in [1, p-1] \)
\(Y_a = g^{X_a} \mod p \)

Choose
\(X_b \in [1, p-1] \)
\(Y_b = g^{X_b} \mod p \)

Compute the shared key:
\(K_a = Y_b^{X_a} = g^{X_b X_a} \mod p \)

Compute the shared key:
\(K_b = Y_a^{X_b} = g^{X_a X_b} \mod p \)
Diffie-Hellman Problem

- **Computational Diffie-Hellman (CDH) Problem**

 Given \(Y_a = g^{X_a} \mod p \) and \(Y_b = g^{X_b} \mod p \),

 compute \(K_{ab} = g^{X_a X_b} \mod p \)

- **Decision Diffie-Hellman (DDH) Problem**

 Given \(Y_a = g^{X_a} \mod p \) and \(Y_b = g^{X_b} \mod p \),

 distinguish between \(K_{ab} = g^{X_a X_b} \mod p \) and a random string

- **Discrete Logarithm Problem (DLP)**

 Given \(Y = g^X \mod p \), compute \(X = \log_b Y \)

The Security of the Diffie-Hellman key agreement depends on the difficulty of CDH problem.
MIMT in DH Scheme

$X_b : \text{private}$

$Y_b = g^{X_b} : \text{public}$

$Y_b \\ Y_c \\ Y_c = g^{X_c}$ for some X_c

Bob computes the session key

$K_b = Y_c^{X_b} = g^{X_c X_b}$

$Y_c \\ Y_a \\ Y_a = g^{X_a}$

Alice computes the session key

$K_a = Y_c^{X_a} = g^{X_c X_a}$

Adversary computes both session keys

$K_b = Y_b^{X_c} = g^{X_c X_b}$

$K_a = Y_a^{X_c} = g^{X_c X_a}$

Man-in-the-middle attack comes from no authentication
DH Key Agreement with Certified Key

Domain Parameters
\[p, g \]

- choose \(X_a \in [1, p-1] \)
 \[Y_a = g^{X_a} \mod p \]

- choose \(X_b \in [1, p-1] \)
 \[Y_b = g^{X_b} \mod p \]

Certified key
\(Y_a \) and \(Y_b \)

- compute the shared key
 \[K_a = Y_b^{X_a} = g^{X_bX_a} \mod p \]

- compute the shared key
 \[K_b = Y_a^{X_b} = g^{X_aX_b} \mod p \]

- Interaction is not required
- Agreed key is fixed, long-term use
Elliptic Curve (1/2)

- **Weierstrass form of Elliptic Curve**
 \[y^2 + a_1 xy + a_3 = x^3 + a_2 x^2 + a_4 x + a_6 \]

- **Example (over rational field)**
 \[y^2 = x^3 - 4x + 1 \]
 \[E(Q) = \{(x,y) \in \mathbb{Q}^2 \mid y^2 = x^3 - 2x + 2\} \cup O_E \]
 \[P = (2, 1), \quad -P = (2, -1) \]
 \[[2]P = (12, -41) \]
 \[[3]P = (91/25, 736/125) \]
 \[[4]P = (5452/1681, -324319/68921) \]
Elliptic Curve (2/2)

- Example (over finite field GF(p) : p = 13)
 - P = (2,1), −P = (2, 12), [2]P = (12, 11)
 - Hasse’s Theorem : \(p - 2\sqrt{p} \leq \# of E(p) \leq p + 2\sqrt{p} \)
 - Scalar multiplication: [d]P

- Elliptic Curve Discrete Logarithm
 - Base of Elliptic Curve Cryptosystem (ECC)

\[y = g^x \mod p \quad \leftrightarrow \quad Q = [d]P \]

Find x for given g, p, Y

Find d for given P, Q
ECC

- **Advantages**
 - Breaking PKC over Elliptic Curve is much harder.
 - We can use much shorter key about 1/6.
 - Encryption/Decryption is much faster than other PKCs.
 - Suitable for restricted environments like mobile phone, smart card.

- **Disadvantages**
 - It’s new technique ➜ There may be new attacks.
 - Too complicated to understand.
 - ECC is a minefield of patents.
 : e.g., US patents
 4587627/739220 – Normal Basis, 5272755 – Curve over GF(p)
 5463690/5271051/5159632 – p=2^q-c for small c, etc…
Implementation

- **RSA Encryption/Decryption**

<table>
<thead>
<tr>
<th></th>
<th>Encryption</th>
<th>Decryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#1-v1.5</td>
<td>1.49 ms</td>
<td>18.05 ms</td>
</tr>
<tr>
<td>PKCS#1-OAEP</td>
<td>1.41 ms</td>
<td>18.09 ms</td>
</tr>
</tbody>
</table>

- **Signature**

<table>
<thead>
<tr>
<th></th>
<th>Signing</th>
<th>Verifying</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#1-v1.5</td>
<td>18.07 ms</td>
<td>1.24 ms</td>
</tr>
<tr>
<td>PKCS#1-PSS</td>
<td>18.24 ms</td>
<td>1.28 ms</td>
</tr>
<tr>
<td>DSA with SHA1</td>
<td>2.75 ms</td>
<td>9.85 ms</td>
</tr>
<tr>
<td>KCDSA with HAS160</td>
<td>2.42 ms</td>
<td>9.55 ms</td>
</tr>
</tbody>
</table>

- **Modular Exponentiation vs. Scalar Multiplication of EC**

<table>
<thead>
<tr>
<th></th>
<th>M.E. (1024-bit)</th>
<th>S.M. (GF(2^{162}))</th>
<th>S.M. (GF(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52.01 ms</td>
<td>2.24 ms</td>
<td>1.17 ms</td>
</tr>
</tbody>
</table>
Equivalent Key Size

<table>
<thead>
<tr>
<th>Bits of security</th>
<th>Symmetric key algorithms</th>
<th>FFC (e.g., DSA, D-H)</th>
<th>IFC (e.g., RSA)</th>
<th>ECC (e.g., ECDSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>2TDEA(^1)</td>
<td>(L = 1024)</td>
<td>(k = 1024)</td>
<td>(f = 160-223)</td>
</tr>
<tr>
<td>112</td>
<td>3TDEA</td>
<td>(L = 2048)</td>
<td>(k = 2048)</td>
<td>(f = 224-255)</td>
</tr>
<tr>
<td>128</td>
<td>AES-128</td>
<td>(L = 3072)</td>
<td>(k = 3072)</td>
<td>(f = 256-383)</td>
</tr>
<tr>
<td>192</td>
<td>AES-192</td>
<td>(L = 7680)</td>
<td>(k = 7680)</td>
<td>(f = 384-511)</td>
</tr>
<tr>
<td>256</td>
<td>AES-256</td>
<td>(L = 15360)</td>
<td>(k = 15360)</td>
<td>(f = 512+)</td>
</tr>
</tbody>
</table>

Recommendation for the Transition of Cryptographic Algorithm and Key Sizes, NIST800-121, Jan. 2010.
Key Length by NIST

<table>
<thead>
<tr>
<th>Date</th>
<th>Minimum of Strength</th>
<th>Symmetric Algorithms</th>
<th>Asymmetric</th>
<th>Discrete Logarithm Group</th>
<th>Elliptique Curve</th>
<th>Hash (A)</th>
<th>Hash (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 - 2010</td>
<td>80</td>
<td>2TDEA*</td>
<td>1024</td>
<td>160</td>
<td>1024</td>
<td>160</td>
<td>SHA-1**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-224</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-512</td>
</tr>
<tr>
<td>2011 - 2030</td>
<td>112</td>
<td>3TDEA</td>
<td>2048</td>
<td>224</td>
<td>2048</td>
<td>224</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-512</td>
</tr>
<tr>
<td>> 2030</td>
<td>128</td>
<td>AES-128</td>
<td>3072</td>
<td>256</td>
<td>3072</td>
<td>256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-384</td>
</tr>
<tr>
<td>>> 2030</td>
<td>192</td>
<td>AES-192</td>
<td>7680</td>
<td>384</td>
<td>7680</td>
<td>384</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-384</td>
</tr>
<tr>
<td>>>> 2030</td>
<td>256</td>
<td>AES-256</td>
<td>15360</td>
<td>512</td>
<td>15360</td>
<td>512</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-512</td>
</tr>
</tbody>
</table>