
Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols

MIHIR BELLARE* PHILLIP ROGAWAY t

Abstract

We argue that the random oracle model --where all par-
ties have access to a public random oracle-- provides a
bridge between cryptographic theory and cryptographic
practice. In the paradigm we suggest, a practical proto-
col P is produced by first devising and proving correct
a protocol pR for the random oracle model, and then
replacing oracle accesses by the computation of an "ap-
propriately chosen" function h. This paradigm yields
protocols much more efficient than standard ones while
retaining many of the advantages of provable security.
We illustrate these gains for problems including encryp-
tion, signatures, and zero-knowledge proofs.

1 Introduct ion

Cryptographic theory has provided a potentially in-
valuable notion for cryptographic practice: the idea of
provable security. Unfortunately, theoretical work often
seems to gain provable security only at the cost of effi-
ciency. This is due in part to the following. Theorists
view certain primitives (e.g., one-way functions) as "ba-
sic" and build more powerful primitives (e.g., pseudo-
random functions) out of them in inefficient ways; but
in practice, powerful primitives are readily available and
the so-called basic ones seem to be no easier to imple-
ment. In fact theorists deny themselves the capabili-

* High Performance Computing and Communications, IBM
T.J. Watson Research Center, P.O. Box 704, Yorktown Heights,
NY 10598, USA. e-mail: mihir@watson.ibm, com.

t PS LAbl System Design, IBM Personal Software Prod-
ucts, 11400 Burnet Road, Austin, TX 78758, USA. e-mail:
rogaway@aust in . ibm. com.

Permission to copy without fee all or part of this material is
granted provided that the copies era not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, end notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission,
1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011..,$1.50

ties of practical primitives which satisfy not only the
strongest kinds of assumptions they like to make, but
even have strengths which have not been defined or for-
malized.

In order to bring to practice some of the benefits of
provable security, it makes sense to incorporate into our
models objects which capture the properties that prac-
tical primitives really seem to possess, and view these
objects as basic even if the assumptions about them
are, from a theoretical point of view, very strong. This
paper highlights the efficacy and potential of one such
approach. The idea is a simple one: namely, provide all
parties - -good and bad alike-- with access to a (public)
random oracle; prove correct a protocol in this model;
then replace the random oracle by an object like a hash
function. We stress that the proof is in the random or-
acle model and the last step is heuristic in nature. It is
a thesis of this paper that significant assurance benefits
nonetheless remain.

The idea of such a paradigm builds on work of Gol-
dreich, Goldwasser and Micali [20, 211 and Fiat-Shamir
[14]. It is guided by many previous "unjustified" uses
of hash functions. Finally, it incorporates viewpoints
which, shared and verbally articulated by many mem-
bers of our community, should be regarded as folk-
lore. In this light, we view our contribution as follows.
First, we raise the implicit philosophy behind the use of
a random oracle to an explicitly articulated paradigm
which we maintain brings significant benefits to prac-
tice. Second, we systematically apply the paradigm to
diverse cryptographic problems to obtain efficient so-
lutions. Third, we provide definitions and proofs to
show that some of the previously "unjustified" uses of
hash functions can find justification in the random or-
acle model. Finally, we suggest constructions of hash
functions which we believe are appropriate to instanti-
ate the random oracle. We proceed by describing the
paradigm in further detail. For details on background
and related work see Section 1.3.

62

1 .1 T h e R a n d o m O r a c l e P a r a d i g m

The aforementioned disparity between the theoreti-
clans' and practioners' views on primitives is illustrated
by the following example. Theorists view a one-way
function as a basic object and build pseudo-random
functions from them. But in practice, as indicated by
Luhy and Rackoff [30, 31], the DES provides a pseudo-
random function of 64 bits to 04 bits. Ironically, if one
needs a practical protocol for a one-way function, likely
one would construct it from DES-- thereby reducing the
"simple" primitive to the "complex" one.

If one is trying to design efficient protocols, it makes
more sense to start off making strong, realistic assump-
tions about the primitives that will be used. Based on
the paragraph above, a pseudorandom function on 64-
bit strings is an excellent starting point. As we describe
below, it seems reasonable to adopt even more generous
assumptions.

POWERFUL PRIMITIVES. Let us look at a second
efficiently-computable primitive: the map h2 defined by
the MD5 algorithm [35] restricted to inputs of length
< 400, say. 1 One has expectations like these of this func-
tion: that it is hard to find an z such that h2(z) = z;
that it is hard to find an z such that h2(z) has Ham-
ming weight exceeding 120; that fa (z) = h2(za) is (in
practice) a pseudorandom function family; etc. What
really is this object? To date, there has been no sat-
isfactory answer. Tha t is, there is no formal definition
which captures a large fraction of the nice properties
this function seems to possess--and it is not clear that
one can be found.

THE PARADIGM. Our answer to "what might a function
like h2 accomplish?" is to say that it can be thought of
as a random function in the sense that it can be used
in the following design methodology in the role of h.
Suppose one has a protocol problem 1I (the problem
being "independent" of the primitive h.) In order to
devise a good protocol P for II:

(1) Find a formal definition for II in the model of com-
putation in which all parties (including the adver-
sary) share a random oracle R.

(2) Devise an efficient protocol P for II in this random
oracle model.

(3) Prove that P satisfies the definition for II.

(4) Replace oracle accesses to R by computat ion of h.

It is our thesis that this method, when properly car-
ried out, leads to secure and efficient protocols. In-
deed, protocols constructed under this paradigm have
so far proven "secure" in practice. But we stress that
all claims of provable security are claims made within

ISee Sec t ion 6 for why we prefer no t to use MD5 itself.

the random oracle model, and instantiating the oracle
with h is only a heuristic whose success we trust from
experience.

Note that h cannot really be like a random function
because it has a short description. In many ways, h
is very different from a random oracle. This has not
altered the success of the method.

We stress that the protocol problem II and protocol
P must be "independent" of the hash function we are
to use. It is easy to construct unnatural problems or
protocols whose description and goals depend explicitly
on h so that the protocol is secure in the random oracle
model but fails when the random oracle is instantiated
with the hash function. The notion of "independence"
will not be formalized in this paper.

INSTANTIATION. For the body of this paper, we assume
a random oracle R from (0, 1}* to (0, 1} °°. We use
such an oracle without further explanation to provide
whatever random maps are convenient for describing a
given protocol.

When instantiating a random oracle by a concrete
function h, care must he taken first to ensure that h
is adequately conservative in its design so as not to
succumb to cryptanalytic attack, and second to en-
sure that h exposes no relevant "structure" attribut-
able to its being defined from some lower-level primi-
tive. Examples of both types of pitfalls are given in
Section 6. As explained in tha t section, standard hash
functions like MD5 and SHA don't by themselves make
good replacements for a random oracles; but one does-
n ' t have to look much further. Candidate instantiations
include hash functions with their outputs truncated;
hash functions with their input lengths restricted; and
hash functions used in some nonstandard way, such as
ha(z) ---- MD5(~x). See Section 6.

1 .2 R e s u l t s

The results of this paper can can be divided into three
kinds. First are new and efficient solutions for vari-
ous cryptographic problems. Second are justifications of
known heuristics. Third are some "theoretical" results
in the random oracle model which our investigations
have lead us to prove. In each case we provide proto-
cols, theorems, and the new definitions appropriate to
the random oracle setting.

EFFICIENT ENCRYPTION. Goals which are possible
but impractical in the standard setting become prac-
tical in the random oracle setting. We illustrate with
one example: public key encryption. In what follows
G: (0, 1}* ---, (0, 1} °° is a random generator; k is the
security parameter; H: (0, 1}* --, (0, 1} ~ is a random
hash function; f is a trapdoor permutation with inverse

6 3

f - l ; G(r) @ x denotes the bitwise XOR of z with the
first [z[bits of the output of G(r); and "H" denotes con-
catenation. For a concrete implantation, f might be
squaring [35] or RSA [38].

We suggest two schemes to encrypt efficiently in the
random oracle model:

(1) Set EG(z) ---- f (r) II a (,) • for a random value
r from the domain of f .

(2) Set EG'H(x) -~ f (r)][G (r) G z I[H (r x) for a ran-
dom value r from the domain of .f.

Here z is the message to be encrypted, f is the recip-
ient's public key, and f - 1 is his secret key. For back-
ground, definitions, precise statements of results, and ef-
ficiency comparisons with known schemes see Section 3,
but, briefly, what is argued there is the following: the
first scheme achieves polynomial/semantic security as
defined by [24]; the second is secure against chosen-
ciphertext attack in the sense of [36] as well as non-
malleable in the sense of [13]; and both are significantly
more efficient than previous provably-secure schemes
[24, 4, 34, 36, 11, 13] for the same goals.

JUSTIFICATION O F KNOWN HEURISTICS. A variety of
well-known "tricks" find formal justification by moving
to the random oracle setting. (This does not mean that
existing protocols can usually be justified by adopting a
random oracle model; to the contrary, it appears to be
more the exception than the rule.) We illustrate with
the following pair of examples.

Popular signature schemes such as RSA are an in-
stance of the following: for a trapdoor permutation
f and hash function H the signature of message z is
f - l (/ . / (~)) . It is widely recognized that no natural
properties of a hash function make such a method a
secure signature scheme. However for H a random hash
function we show the scheme is secure against adaptive
chosen message attack. See Section 4.

A heuristic to eliminate interaction in a zero-
knowledge interactive proof, attributed to M. Blum, 2 is
to have the prover essentially ask of himself the queries
that a verifier would ask by computing these queries
as the hash of the messages already exchanged between
the parties. We show that this construction is prov-
ably secure in the random oracle model. Providing this
proof has necessitated giving formal definitions for zero-
knowledge in the random oracle model. See Section 5.

THEORETICAL RESULTS. Generalizing the result just
described, we show that any language that has an in-
teractive proof can have its proof efficiently transformed
into a non-interactive zero-knowledge one. The model
of computation is that all parties --including cheating
provers-- are afforded only polynomially many queries

2 Personal communication, via S. Micali and S. Rudich.

to the random oracle. We also show that in the random
oracle model, constant round, information theoretically
secure function evaluation is possible, s Definitions and
proofs of these results are omitted for lack of space.

1 .3 B a c k g r o u n d a n d R e l a t e d W o r k

The basic idea of proving correct a protocol in a model
where the parties have a random oracle and then instan-
tiating that oracle with an appropriate cryptographic
primitive originates in [20, 21]. The cryptographic prim-
itive suggested and constructed for this purpose by [20]
is the pseudo-random function (PRF). For a PRF to
retain its properties, however, the seed via which it is
specified (and which enables its computation) must re-
main unknown to the adversary. Thus the applicability
of the paradigm is restricted to protocols in which the
adversary is denied access to the random oracle. 4 Thus
in many applications (and the ones of this paper in par-
ticular) PRFs don't suffice. Note, however, that when
the setting permits instantiation of the oracle via PRFs,
the resulting protocol can usually be proven correct in
the standard model of computation under a standard
complexity-theoretic assumption, something instantia-
tion via hash functions as we suggest does not achieve.

The first work which explicitly adopts a public ran-
dom oracle model - -a l l parties, adversary included, can
access the oracle-- is that of Fiat and Shamir [14]. The
authors use this model to turn an identification scheme
into a digital signature scheme (without "totally" sac-
rificing rigor in the course of this transformation).

M. Blum's aforementioned idea of making interactive
proofs non-interactive can be thought of as an extension
of the Fiat-Shamir idea. An exciting recent result on
computationally bounded checking, due to Micali [32],
exploits in part this same technique.

Impagliazzo and Rudich [27] model one-way functions
as random oracles. They do this in order to show that
proving the existence of a secret key exchange protocol
given a black box one-way function is as hard as sep-
arating P from NP. They also use random oracles for
positive results; among these, they formalize and prove
the existence of a private key cryptosystem in the ran-
dom oracle model.

Concurrent and independent of our work, Leighton
and Micali [28] view hash functions as public random
oracles to justify the security of a new, efficient signature
scheme. They use the random oracle model to define
and prove exact, non-asymptotic security. In another

3 In this application it does not suffice to replace the pseudo-
random generator used in [1] by a random generator.

4 That is, the adversary is denied direc~ access to the oracle.
A particular problem might permit the adversary indirect access
to the oracle via her interaction with the good parties.

6 4

paper [29] the same authors use hash functions viewed as
random oracles to give new secret key exchange schemes.

Because of the breadth of topics in this paper, history
specific to to a particular goal is summarized in the
section that describes that goal.

1 .4 F u t u r e D i r e c t i o n s

Brought out in only a limited way in the current work,
and fully in [28], is the fact that the random oracle
model facilitates giving definitions and results precise
in the sense of avoiding complexity theory and asymp-
totics. It is feasible and desirable to make our results
precise in this sense. A typical theorem would express
the advantage an adversary gains in terms of the num-
ber of oracle queries which she makes.

We know no complexity-theoretic assumption which
does a good job of capturing all the nice properties of a
public random oracle. Is there a way to extend the [20]
notion of a pseudorandom function family to an equally
useful and compelling notion which involves no hidden
randomness?

2 P r e l i m i n a r i e s

NOTATION. {0, I}* denotes the space of finite binary
strings and {0, i} °° denotes the space of infinite ones.
Strings are finite unless we say otherwise. We denote
by anlb , or just ab, the string which is the concatena-
tion of strings a and b. The empty string is denoted
A. A polynomial time algorithm is one which runs in
time polynomial in its first argument. "PPT" stands
for "probabilistic, polynomial time." A function e(k)
is negligible if for every c there exists a k~ such that
e(k) <_ k -c for every k > k~. A function is said to be
non-negligible if it is not negligible. We'll use the nota-
tion "k-~(1)" to mean the class negligible functions or
a particular anonymous function in this class. For spec-
ifying probabilistic experiments and spaces we use the
notation originating in [26]. Recall in particular that
if A is a probabilistic algorithm of inputs z, y , . . . then
a ~ A(z, y , . . .) denotes the experiment of choosing a
by running A(z, ~/,...), and [A(z, y , . . .)] denotes the set
of all elements which can be output by A(z, y , . . .) with
positive probability.

ORACLES. For convenience, a random oracle R is a
map from {0, 1}* to {0, 1} °° chosen by selecting each bit
of R(z) uniformly and independently, for every z. Of
course no actual protocol uses an infinitely long output,
this just saves us from having to say how long "suffi-
ciently long" is. We denote by 2 °0 the set of all random
oracles.

The letter "R" will denote the "generic" random or-
acle, while G: {0, 1}* --, {0, 1} °° will denote a random
generator and H: {0, 1}* ~ {0, 1} ~ a random hash
function. Whenever there are multiple oracles men-
tioned, all of these are independently selected. Via all
sorts of natural encodings, a single random oracle R can
be used to provide as many independent random oracles
as one wants.

As usual the oracles provided to an algorithm are in-
dicated by superscripts. Sometimes the oracle is under-
stood and omitted from the notation.

TRAPDOOR PERMUTATIONS. Following [26], a ~rapdoor
permutation generator is a PPT algorithm G. which on
input 1 ~ outputs (the encoding of) a triple of algorithms
(f, f - l , d). The first two are deterministic and the last
is probabilistic. We require that [d(lk)] be a subset of
{0, 1} k and that f , f - 1 be permutations on [d(lk)] which
are inverses of one another. We require that there exist
a polynomial p such that f , f - 1 and d are computable
in time p(k), and that for all nonuniform polynomial
time adversaries M,

e(k) = Pr[(f, f - l , d) ~-- G.(l t) ;

y M(f , d, y) =]
is negligible. As mentioned before, squaring modulo an
appropriate composite number [42, 3], variations of it
[26], or RSA [38] are good examples of trapdoor per-
mutations. Call a trapdoor permutation generator ~.
uniform if for all k and all (f, f - l , d) E [G(I~)] it is the
case that d is the uniform distribution on {0, 1} k.

3 E n c r y p t i o n

We have relied on definitional work in [24, 33, 19, 18,
34, 13]. For simplicity we consider adversaries who
are nonuniform (polynomial time) algorithms, possi-
bly probabilistic; extensions to the uniform case can be
made following [18].

ENCRYPTION. We extend the notion of public key en-
cryption [12] to the random oracle model. The scheme
is specified by a PPT generator G which takes a se-
curity parameter 1 k and outputs a pair of probabilis-
tic algorithms (E, D) which are called the encryption
and decryption algorithms respectively and which run
in time bounded by G's time complexity. A user U runs
G to get (E, D) and makes the former public while keep-
ing the latter secret. To encrypt message z anyone can
compute y 4-- ER(z) and send it to U; to decrypt ci-
phertext y user U computes z ~-- DR(y). We require
DR(ER(z)) = z for all z and assume for simplicity that
DR(y) = 0 if y is not the encryption under E R of any
string z.

65

3 .1 P o l y n o m i a l S e c u r i t y

BACKGROUND. The "basic" security goal of public key
encryption finds its formalization in Goldwasser and Mi-
cali's iequivaient) notions of polynomial and semantic
security [24]. If By denotes a hard core predicate for
f i c f . [5, 43, 23]) then security in the sense of [24] can
be achieved by setting E(z) = f (r t) [[. . . 11 f(rlzl)
where each ri is randomly chosen from the domain of
f with the restriction that Byiri) = xi. This yields
an encryption of length O(k. [z]), which requires O([zl)
evaluations of f to encrypt and O([z D evaluations of
f - 1 to decrypt, which is not practical. A more effi-
cient construction of Blum and Goldwasser [4] yields
encryptions of size O(]z I + k) requiring O(Izl) modular
squarings operations to encrypt and O(1) modular ex-
ponentiations plus o(Izl) modular squaring to decrypt,
which is still too expensive. Practioners often embed
the message z into an otherwise random value r~ and
then set E(z) = f(r~). (For example, this is exactly
what [39] specifies.) The embeddings usually used do
not guarantee that z is as hard to find as r~ (let alone
that all properties of z are hidden).

DEFINITION. We adapt the notion of polynomial se-
curity [24] to the random oracle model. (A similarly-
extended notion for semantic security remains equiv-
alent.) A CP-adversary (chosen-plaintext adversary)
A is a pair of nonuniform polynomial time algorithms
(F, A1), each with access to an oracle. For an encryp-
tion scheme G to be secure in the random oracle model
we require that for any CP-adversary A = i F, A1),

P r [R ~ 2°°; iE, D) +-- G(I~); (rno,rnl) +-- F n i E) ;

b {0,1); ER(mb) :
Af(E, raG, ml , or) = b] < ½ + k -'°(1).

Note that the oracle used to encrypt and decrypt is
given to the adversary who tries to distinguish the en-
cryption of strings m0 and ml , so, for example, a hash
H(z) with H derived from R could most certainly not
appear in the secure encryption of a string x.

ENCRYPTION BY E(z) = f(r) II G(r) • To specify
our encryption scheme, let G, be a trapdoor permuta-
tion generator and let G: {0, 1}* --~ {0, 1} °° be a ran-
dom generator. On input 1 t our generator G runs ~.
to get (f, f-X,d). E is the algorithm which on input z
picks r ~ d(1 ~) and outputs EG(z) = f (r) II G (r) ~ z ,
where G(r) @ z denotes the XOR of the first Izl bits of
Gir) with z. Of course the decryption function is then
DO(ys) = s @ G(f-l(V)).

THEOREM. In Appendix A we show that the above
scheme is polynomially secure in the random oracle
model.

COMPARISON. We achieve encryption size o(Izl + k).
Besides hashing of negligible cost, encryption needs one
application of] and decryption needs one application
of f - x . Setting f to squaring this means one modular
squaring to encrypt and one modular exponentiation to
decrypt. This is much more efficient than the scheme of
[4] discussed above.

3 . 2 C h o s e n C i p h e r t e x t S e c u r i t y

BACKGROUND. Naor and Yung [34] provided a defini-
tion of chosen ciphertext security and the first scheme to
provably achieve it. Rackoff and Simon [36] suggested
a stronger notion and a corresponding solution; another
solution was given by De Santis and Persiano [11]. The
last two exploit proofs of knowledge, as suggested ear-
lier by [17, 6]. All known schemes provably secure un-
der standard assumptions rely on non-interactive zero-
knowledge proofs [7, 16] and are prohibitively inefficient.
Damg&rd [10] suggests an efficient scheme to achieve
the definition of [34], but this scheme is not proven to
achieve the definition of [34] and it does not achieve
the one of [36] which we are interested in. A scheme of
Zheng and Seberry [44] closely related to ours will be
discussed later.

DEFINITION. We adapt the definition of [36] to the ran-
dom oracle setting. An RS-adversary ("Rack°ff-Sim°n
adversary") A is a pair of nonuniform polynomial time
algorithms A = (F, A1), each with access to an oracle
R and a black box implementation of D R. F ' s job is to
come up with a pair of (equal length) messages m0 and
ml such that if A1 is given the encryption ct of a random
one of these, A1 won't be able to guess well which one
as long as A1 is not allowed to ask a of the decryption
oracle. Formally, Ai is forbidden from asking an oracle
query equal to its final argument. Encryption scheme

is secure against RS-attack if for each RS-adversary
A : (F, A1),

P r [R *-- 2°°; (E ,D) +-- G(lk); (mo, ml) *-- FR'DR(E);

b +-- {0, 1}; ~ *-- Eaimb):
A R'DR' ' a) b] < + 1 ~/~, 7nO, ~i, ---- _ _

ENCRYPTION BY E(x) : f i r) II G (r) • • II
It is easy to see that the scheme of the previous sec-
tion is not secure against RS-attack. We now specify
an efficient scheme which is. Let G, be a trapdoor
permutation generator. Let G: {0, 1}* ---, {0, i} ~ be
a random generator, and let H: {0, 1}* --* <0, 1} k be
a random hash function, independently derived from
the random oracle. The generator G of our scheme
runs G. to get (f, f - l , d) . E is the algorithm which
on input z picks r +-- di 1~) and outputs EG'Hix) +--
f i r) II • • Gir) II H i r e) To decrypt a string y, parse

66

it to a II ~ II b for I~l = Ibl = k and define DO'H(y) as
w~G(f -~ (a)) if H(f - t (a) II w@G(f- t (a))) : b, and
0 otherwise.

THEOREM. In Appendix A we show that the above
scheme is secure against chosen-ciphertext attack.

COMPARISON. Translated into the random oracle model
and our notation, the scheme of Zheng and Seberry [44]
is E*(z) = / (r) II (G(,) ~ (~H(~))). This scheme is as
efficient as ours, and we believe it has the same security
properties. Thus, the random oracle model serves to
justify the construction of [44].

3 . 3 N o n - M a l l e a b i l i t y

BACKGROUND. The notion of non-malleability was in-
troduced by Dolev, Dwork and Naor [13]. Informally,
an encryption scheme is non-malleable if you cannot, by
witnessing an encryption of a string z, produce the en-
cryption of a related string z ~. For example, given the
encryption of z you shouldn't be able to produce the en-
cryption of ~. The notion extends polynomial security,
and in particular the latter is implied by the former. A
construction of non-malleable schemes is given in [13].
However, this construction is completely impractical, in-
volving huge public keys, computation of multiple signa-
tures, and many non-interactive zero knowledge proofs.

DEFINITION. We adapt to the random oracle setting
the definition of [13]. An interesting relation p~,~ :
<0,1}* × {0,1}* ---, {0,1} must satisfy p~ , , (z , z) =
p~,.Cz, 0') = o for every z e {0 ,1}* , i e N, R e 2 °°,
and E, ~r G {0, 1].*; furthermore, p must be computable
by a polynomial time Turing machine MR(z, y, E, 7r).
An M-adversaxy ("malleability adversary") .4 is a pair
(F, A) of non-uniform probabilistic polynomial time al-
gorithms, each with access to an oracle R. When F runs
it outputs the description of an algorithm 7r which also
takes an oracle and which runs with time complexity
no greater than that of F. For an encryption scheme

to be non-malleable we require that for every inter-
esting relation p and every M-adversaxy (F, A) there
exists a (nonuniform) polynomial time A. such that
[e (k) - ¢.(k)] is negligible, where

e(k) = Pr [R #-- 2°0; (E,D) ~- G(I~); 7r ~-- FR(E);

~- ¢~(1~); ~ ~- ER(z) ; ~' ~_ A~(E, ¢, ~) :

p~,¢(z, DR(a')) = 1]

, , (k) = Pr [R ~-- 2°°; (E,D) ~-- G(lk); ~r ~ FR(E);

' AR,(E, 7r):

pR t z D R t a ~ I] E,~rk , ~, .11 =
See [13] for explanations on the intuition underlying this
definition, including the restriction on the relation p.

ENCRYPTION BY E(:c) = f(r)II G (r) ~ • II H(r~).
The encryption scheme is the same as that of the pre-
vious section.

THEOREM. In Appendix A we show that the above
scheme is non-malleable.

4 S i g n a t u r e s

DEFINITION. We extend the definitions of [26] to the
random oracle setting. A digital signature scheme is
a triple (~, Sign, Verify) of polynomial time algorithms,
called the generator, signing algorithm, and verifying
algorithm, respectively. The first two axe probabilis-
tic and the last two have access to the random oracle.
On input 1 ~, the generator produces a pair (PK, SK)
of matching public and secret keys. To sign message
rn compute a ~ SignR(SK, rn); to verify (m, or) com-
pute VerifyR(PK, m, or) E {0, 1}. It must be the case
that VerifyR(PK, m, or) = 1 for all or e [SignR(SK, ~)].
An S-adversary ("signing adversary") is a (nonuniform)
polynomial-time algorithm F with access to R and a
signing oracle. The output of F is a pair (m, or) such
that ra was not queried of the signing oracle. The sig-
nature scheme is secure if for every S-adversaxy F the
function ¢(k) defined by

P r [R ~-- 2°°; (PK, SK) 4-- G(I~); (rn, a) 4--

FR,Sig"~(SK,')(PK) : VerifyR(PK, rn, or) : 1]

is negligible. We say that F is successful if its output
(rn, or) satisfies VerifyR(PK, m, or) = 1.

PROTOCOL. Fix a trapdoor permutation generator G..
For simplicity assume it is uniform; see below for how
to patch things for standard ones. Let H: {0, 1}* --*
{0, 1) k denote as usual a random hash function. The
signature scheme is ({~, Sign H, Verify H) where G on in-
put 1 k outputs PK = f and SK =/-1; SignH(f - l ,m)
is f - l (H(m)) ; and VerifyH (f , m, a) is 1 if and only
if f(or) = H(rn). In other words just the "classical"
method of signing with the aid of a hash function.

UNIFORMITY: A TECHNICALITY. Standard trapdoor
permutations (squaring based or RSA) are not uniform
and the scheme must be patched to handle them. There
are many ways of patching. RSA, and squaring as de-
fined in [26], have dense domains in which membership
can be efficiently tested. So to sign rn we could modify
the scheme to compute H(1 H m) ,H(2 H m) , . . , until
a member y - H(i [[m) of the domain is found and
then return (i, f - l (y)) . Verification is defined in the
obvious way. Another alternative for these functions is

app ly the construction of [2, Section 4.2] to make them
uniform. The squaring functions defined in [42, 3] don't
have efficiently testable domains but various patches can

67

nonetheless be made. In fact it isn't even necessary for
the function to be a permuta t ion (cf. [35]).

SBCURITY. Suppose F is an S-adversary successful
with a nonnegligible probabil i ty A(k). We construct al-
gori thm M(f, d, y) which nonnegligibly often computes
f-l(y), as follows. M lets PK = f . It flips coins for
F and starts running F. We assume that F makes
exactly n(k) queries to H, all distinct, and tha t if F
makes a signing query m then it has already queried
H(m) ; this is easily seen to be wlog. Now M chooses
t 6 { 1 , . . . , n(k)) at random. It then replies to queries
as follows:

(1) Let rn~ denote the i-th H query that F makes.
If i = t then M answers by returning y. Else it
chooses n ~-- {0, 1} ~ and returns y~ = f (n) .

(2) Suppose F makes signing query m. If m = mt then
M halts, admi t t ing failure. Otherwise M answers
with r~ where i ~ t satisfies m = mi.

Let (m, a) be F ' s output . If m ~ m~ then M halts ad-
mit t ing failure. Else it outputs a and halts. The proba-
bility that M(f, d, y) successfully computes f-~(y) can
be shown to be at least

which is still nonnegligible.

5 Zero Knowledge

We provide definitions for zero-knowledge (ZK) proofs
in the random oracle and then show how ZK interac-
tive proofs can be made non-interactive in this model.
The t ransformation is efficient, so that we get non-
interactive ZK proofs of complexity equal to interactive
ZK ones.

5 . 1 D e f i n i t i o n s

Definitions for zero-knowledge in the random oracle
model involve a little more than simply "relativizing"
the s tandard ones. Wha t follows extends the formula-
tion in the usual interactive setting [25] as well as the
formulation in the common random string model [6, 7].

SBTTING. For simplicity we discuss proofs for a lan-
guage L 6 NP. Fix a NP relation p defining L; a wit-
ness for the membership of z in L means a string w
satisfying p(z, w) -- 1. A witness selector is a function
W which on any input z 6 L returns a witness for the
membership of z in L.

A verifier is polynomial t ime function V which given
common input z, conversation s 6 {0, 1}* so far, and
a (private) random tape r 6 {0, 1} °° returns V(z , s, r)

which is either the next message to the prover or a bit in-
dicating his decision to either accept or reject. A prover
is a P P T 5 function P which given the common input z,
conversation ~ so far, and auxiliary input a returns the
next message Pa(z, ~) to the verifier. (When z 6 L the
auxiliary input is a witness to this fact, and otherwise it
is the empty string). In the random oracle model both
prover and verifier take also this oracle.

For any oracle R denote by c o n v (V R, p R , z , r) the
space of all (transcripts of) conversations between p R
and V R when the common input is • and V's random
tape is r 6 {0, 1}°% Denote by ACCv(~,r) G {0, 1} the
verifier's decision on whether or not to accept. Let

ACC(e~, V, z) = er[R *- 2°°; r ~- {0, 1}°°;

conv(V R, r): Accv(, = I]

denote the probability that V accepts in an interaction
with Pa on common input z. In proofs and protocols
we'll often abuse notation and work only with whatever
prefixes of the infinite string r are relevant.

PROOF SYSTBMS. We say that (P, V) is an interactive
proof for L, in the random oracle model and with error
e(n), if e(n) ~ 1/2 and the following two conditions
hold. The complef.eness condition asks that if z E L
then for all witnesses w to the membership of z in L
it is the case that ACC(V, Pw, z) = I. The soundness
condition asks that for all PPT P and sufficiently long
z it is the case that ACC(PA, V, Z) ~ e([z[).

VIZWS. To define zero-knowledge the view of the ver-
ifier is first updated to include the random oracle; we
define

rview(V, Ps, z) = { R ~- 2°°; r ~-- {0, I}°°;

conv(V V$, r): r; R) }.

SIMULATORS. Since the random oracle is part of the
view, it must also be part of the output of the simula-
tor; i.e. the simulator is allowed to construct a "simula-
tion" of the oracle. This is analogous to non-interactive
zero-knowledge [6, 7] where the simulator is allowed to
construct and output a "simulation" of the common
random string. However, the random oracle is an infi-
nite object, and so we can't ask the simulator to output
it. Instead we allow the simulator to prescribe a small
(polynomial sized) piece of the oracle, and have the rest
"magically" filled at random. Formally, a simulator is
a PPT algorithm which on any input z outputs a triple
(s , r ' , T) where T : (~l, Y l) , . . . , (z t , y t) i s a sequence
of pairs of strings with the property that z l , . . . , z~ axe

5 In principle the results in the random oracle model require us
to restrict only the number of oracle calls, not the running time of
the prover. But at time of instantiation with hash functions run-
ning time should be restricted anyway so we make the assumption
straight away. Thus we are in the "argument" model of [9].

68

distinct. The random oracle completion operation R0C
takes as input T and returns an oracle R which is ran-
dom subject to the constraint that R(zi) is prefixed by
Yi for all i = 1 , . . . , t. 6 It is convenient to similarly de-
fine the random s$ring completion operation RSC which
takes a string r ' E {0, 1}* and appends an infinite se-
quence of random bits. We define the completion of
S(z) to be the probability space

SO(z) = { (~; ,r ' ,T) ~-- S(z); R *--- ROC(T);

r *--- RSC(r') : (~, r; R) }.

DISTINGUISHERS. A distinguisher is a polynomial sized
oracle circuit family D = {D=}=eL. Write D~(s, r) for
the output of circuit D= when given oracle R and inputs
~, r. 7 Then define

e . , =)) =

I Pr[(., r; R) *-- S'(=) : OffiR(-, r) = 1] -
Pr[(-, r; R) P., =): D2(' , r) = 1] .

ZERo-KNoWLEDGE. We say that a simulator S is a P -
simulator for a verifier V over L if for every distinguisher
D, every witness selector W, every constant d and all
sufficiently long z E L it is the case that

diffD(SC(z),rvie'(V, Pw(z), z)) < I =1 .

We say that P defines a (computational) ZK protocol
over L in the random oracle model if for every verifier
~" there exists a P-simulator for ~" over L. Statistical
ZK can be defined analogously. (P, V) is a ZK proof for
L, in the random oracle model and with error e, if it is
a proof system for L with error • and P defines a ZK
protocol over L.

MULTI-THEOREM PROOFS. In applications it is impor-
tant that we be able to prove polynomiaily many, adap-
tively chosen theorems in zero-knowledge, as for zero-
knowledge in the common random string model. For
simplicity we have stuck above to the one theorem case;
in the final paper we will present the general definitions.

PROOFS OF KNOWLEDGE. In the final paper we will
also define proofs of knowledge in the random ora-
cle model and show how to construct efficient, non-
interactive zero-knowledge proofs of knowledge.

5 . 2 P r o t o c o l

THE PROBLEM. Let (P ' , V ') be a ZK proof for L G
NP, in the standard (i.e. random oracle devoid) model,

6 It is understood that the operation refers to the oracle in use
rather than the "generic" underlying one, so that if we are using a
random hash function H then what is returned is an H satisfying
this constraint, etc.

z Here r will be an infinite string, and giving ~, r as input to
D= means the latter will look at only a finite prefix.

achieving error probability 1/2. Let k(n) = w(log n) be
given. We want a non-interactive ZK proof (P, V) in the
random oracle model which achieves error e(n) - 2 -~('~)
while increasing computing time and communicated bits
by a factor of at most O(k(n)).

SIMPLIFYING ASSUMPTIONS. Like most such ZK proofs
assume (pl , V I) is three moves: P~ ~ V' : a followed
by V I --4 P~ : b followed by P~ --~ V I : /3. Here b
is a random bit (the first one on the random tape of
V I which we now think of as just this bit) and w is
the auxiliary input to P ' . The message a consists of
a set of envelopes and has size n°(1). Some subset of
these envelopes is opened according to challenge b, and
for any string a there is exactly one value b E {0, 1} for
which there exists a fl such that ACCv, (abfi, b) = 1. The
zero-knowledge is captured by an algorithm S ~ which
given z, b outputs abfl such that ACCv,(ab/3, b) = 1 and
for any witness selector W the following ensembles are
computationallyindistinguishable: {b ~ {0, 1}; abfl
S'(z , b): (abfl, b) }=eL and { a ~ P~v(=)(z,A); b ~--

{0, 1}; fi *-- P~v(=)(z, ab) : (abfl, b) },~L.

THE TRANSFORMATION. Let H: {0, 1}* --, {0,1} 2k
be a random hash function. The new prover P ~
computes . . . ; P'(=,A); sets
b~ to the i-th bit of H (a l . . . a 2 k) ; computes ~1 ~--

. . . ; * - sends
(al, . . . ,a2~,~1,. . . , f i2~) to V H. V tI sets b~ to the i-th
bit of H (a t . . . a2~) and accepts iff ACCv,(aibifli, bi) = 1
for all i. The fact that the new protocol is non-
interactive and as efficient as claimed is clear.

(P, V) IS A ZK PROOF SYSTEM WITH ERROR 2 -k(n).

Completeness is clear. We can show that if P/~ makes
T(n) oracle queries then ACC(PA, V, z) < T (n) . 2 -a~(n)
which is at most 2 -k('*) for sufficiently long n. For ZK
the tack of interaction implies we only need to simulate
the view of the honest verifier V, and the correspond-
ing simulator S is as follows. Given z E L algorithm
S chooses bt ~-- {0,1}; . . . ; b2t ~-- {0,1}. Now for
each i = 1 , . . . , 2 k it lets aibi~i ~ S ' (z , bi). It sets
T = (a l . . . a 2 ~ , b t . . . b 2 ~) and outputs (c ,A,T) . The
random oracle completion operation applied to T results
in a map H: {0, 1}* --, {0, 1} 2~ which is random subject
to the constraint that H(c t l . . . a2~) = b t . . .b~ . Now
based on our assumption about S ~ we can work through
the definitions and check that S is a P-simulator for V
over L. We omit the details due to lack of space.

6 I n s t a n t i a t i o n

Expanding on the discussion in Section 1.1, here we pro-
vide further guidance in instantiating random oracles
with primitives like hash functions.

6 9

First and foremost, it is not necessary (or desirable)
to pay at tention to the particulars of the target protocol
whose random oracles are being instantiated. All that
matters it is how many oracles are used and what are
their input /output length requirements. Our thesis is
that an appropriate instantiation for a random oracle
ought to work for any protocol which did not inten-
tionally frustrate our method by anticipating the exact
mechanism which would instantiate its oracles.

A significant amount of care must be taken in choos-
ing a concrete function h to instantiate an oracle. Let
us begin with some examples of some things that don't
work.

Consider first the map MD5. This function does
not make a suitable replacement for a random oracle
since [41] has observed that for any z there is a y such
that for any z, MD5(a:yz) can be easily computed given
only Is:l, MD5(a:), and z. Structure like this shows up
in applications; in particular, [41] points out that this
means MD5(az) cannot be used as a message authenti-
cation code of string a: under key a.

Trying to overcome difficulties by avoiding a "struc-
tured" operation like MD5, one might prefer a "lower
level" primitive such as its compression function,
p: {0, 1} 64° --~ {0, 1} 12s. This too does not make a suit-
able replacement for a random oracle, as [8] has demon-
strated that collisions 'can be efficiently found in this
map.

Although standard hash functions are too structured
to make good random oracles (as illustrated above), one
doesn't have to look much further; natural candidates
include constructs like the following, or combinations of
them:

(1) A hash function with its output truncated or folded
in some manner; e.g., hi(a:) = the first 64 bits of
MD5(a:).

(2) A hash functions with its input lengths suitably
restricted; e.g., h2(a:) : MD5(a:), where Izl < 400.

(3) A hash function used in some nonstandard way;
e.g., ha(a:) = MD5(a:z).

(4) The "first block compression function" of a cryp-
tographic hash function, e.g., h4: {0, 1} 512
{0, 1} 12s being the compression of the 512 bit z,
when MD5(a:) is computed.

As an example, suppose one settles on the (purely
heuristic) choice of a map h': {0, 1} 25s --+ {0, 1} 64 de-
fined by h'(z) = the first 64 bits of h4((a:z) @ C), for
a randomly chosen 512-bit constant C. s To extend

a Choosing C at instantiation-time ensures that the algorith-
mic goal is "independent" of its choice of oracle; it "separates" the
instantiation of the random oracles used by different applications;
and it provides a simple means of creating multiple "independent"
random oracles.

the domain and range as needed in a given applica-
tion, one might first define h"(z) = h'(a:(0))llh'(~(1))ll
h'(a:(2))ll-., where Ixl = 224 and (i) is the encoding
of i into 64 bits. Next, one extends h" by encod-
ing each input Z by z ~ consisting of a:, the bit "1",
and enough O's to make Iz'l a multiple of 128 bits.

' where la:~[= 128 and de- Now let a:l = z~...a:,~,
fine h(a:) : h"(a:'o(O)) @ h"(z~(1)) f l) . . . @ h'(a::(n))
yielding a map which, for all practical purposes, takes
h: {0, 1}* --, {0, 1} °°. Of course there are lots of other
equally simple ways to instantiate a random oracle; this
was only an example.

7 Conc lus ion

The protocols used in practice have almost always been
designed by an iterated process of positing a concrete
protocol, searching for a successful attack, finding one,
and a t tempting to close it. This method has not worked
well. By an insistence on defining our goals and prov-
ably achieving them, modern cryptography offers more
to practice than any specific set of results; it is a
methodology beyond the process of iterated design to
solve poorly specified tasks. Although when using our
paradigm one "only" ends up with a result that says
"this protocol is secure to the extent that h instanti-
ates a random oracle," still, one has achieved very much
more than declaring a protocol sound because no one
has as yet come up with a successful attack.

A c k n o w l e d g m e n t s

Early discussions with Bob Blakley on the license server
problem [40] helped crystalyze our idea. We got useful
suggestions and references from Oded Goldreich, Birgit
Pfitzmann, and Steven Rudich. Finally, thanks to the
members of the ACM program committee for all of their
comments.

References

[1] D. BBAVBR, S. MIOALI AND P. ROGAWAY, "The round
complexity of secure protocols," STOC 90.

[2] I~. BELLARE AND S. MICALI, "How to sign given any
trapdoor permutation," JACM Vol. 39, No. 1,214-233,
January 1992.

[3] L. BLUM, M. BLUM AND M. SHUB, "A simple un-
predictable pseudo-random number generator," SIAM
Journa/ on Computing Vol. 15, No. 2, 364-383, May
1986.

[4] M. BLUM ANDS. GOLDWASSBB., "An efficient proba-
bilistic public-key encryption scheme which hides all
partial information," Crypto 84.

7 0

[5] M. BLUM AND S. MIOALI, "How to generate crypto-
graphically strong sequences of pseudo-random bits,"
SIAM Journal on Computing, Vol. 13, No. 4, 850-864,
November 1984.

[6] M. BLUM, P. FELDMAN AND S. MICALI, "Non-
interactive zero knowledge and its applications,"
STOC 88.

[7] M. BLUM, A. DE SANTIS, S. MICALI AND G. PER-
SIANO, "Non-interactive zero-knowledge proof sys-
tems," SIAM 3ournal on Computing, 20(4), 1084-1118
(December 1991).

[8] B. DEN BOER AND A. BOSSELAZRS, "Collisions for the
compression function of MDS," Eurocrypt 93.

[9] G. BaASSAP.D, D. CHAUM AND C. CmiPEAU, "Mini-
mum disclosure proofs of knowledge," JCSS Vol. 37,
No. 2, 156-189, October 1988.

[10] I. DAMG.~RD, "Towards practical public key cryp-
tosystems secure against chosen ciphertext attacks,"
Crypto 91.

[11] A. D~. SANTIS Am) G. PBRSIANO, "Zero-knowledge
proofs of knowledge without interaction" FOCS 92.

[12] W. DWFm AND M. E. tIP.LLMAN, "New directions in
cryptography," IEEE Trans. In]o. Theory IT-22, 644-
654 (November 1976).

[13] D. DOLEV, C. DWORK AND M. NAOR, "Non-malleable
cryptography," STOC 91.

[14] A. FIAT AND A. SHAMIR, "How to prove yourself:
practical solutions to identification and signature prob-
lems," Crypto 86.

[15] U. FEIGB, A. FIAT AND A. SHAMIR, "Zero knowl-
edge proofs of identity," Journa/of Cryptology, Vol. 1,
pp. 77-94 (1987).

[16] U. FEIGE, D. LAPIDOT, AND A. SHAMIR, "Multiple
non-interactive zero-knowledge proofs based on a single
random string," FOCS 90.

[17] Z. GALIL, S. HABBR AND M. YUNG, "Symmetric pub-
lic key cryptosystems," manuscript, July 1989.

[18] 0 . GOLDREICH, "A uniform complexity treatment of
encryption and zero-knowledge," Journal of Cryptol-
ogy, Vol. 6, pp. 21-53 (1993).

[19] O. GOLDRZICH, "Foundations of cryptography," Class
notes, Spring 1989, Technion University.

[20] O. GOLDREICH, S. GOLDWASSER AND S. MICALI,
"How to construct random functions," Journal of the
ACM, Vol. 33, No. 4, 210-217, (1986).

[21] O. GOLDREICH, S. GOLDWASSBR AND S. MICALI, "On
the cryptographic applications of random functions,"
Crypto 84.

[22] O. GOLDRBICH AND H. KRAWCZYK, "On the compo-
sition of zero knowledge proof systems," ICALP 90.

[9.3] O. GOLDREICH AND L. LEVIN, "A hard predicate for
all one-way functions," STOC 89.

[24] S. GOLDWASSBR AND S. MICALI, "Probabilistic en-
cryption," J. of Computer and System Sciences 28,
270-299, April 1984.

[25] S. GOLDWASSBR, S. MICALI AND C. RACKOFF, "The
knowledge complexity of interactive proof systems,"
SIAMJ. ofComp., Vol. 18, No. I, pp. 186-208, Febru-
ary 1989.

[26] S. GOLDWASSER, S. MICALI AND R. RIVEST, "A digi-
tal signature scheme secure against adaptive chosen-
message attacks," SIAM Journal of Computing,
17(2):281-308, April 1988.

[27] R. IMPAGLIAZZO AND S. RUDICH, "Limits on the
provable consequences of one-way permutations,"
STOC 89.

[28] T. LEIGHTON AND S. MICALI, "Provably fast and se-
cure digital signature algorithms based on secure hash
functions," Manuscript, March 1993.

[29] T. LEIGHTON AND S. MICALI, "New approaches to se-
cret key exchange," Crypto 93.

[30] M. LUBy AND C. RACKOFF, "How to construct
pseudorandom permutations from pseudorandom func-
tions," SIAM J. Computation, Vol. 17, No. 2,
April 1988.

[31] M. LUBY AND C. RACKOFF, "A study of password
security," manuscript.

[32] S. MICALI, "CS proofs," Manuscript.

[33] S. MICALI, C. ~ACKOFF AND B. SLOAN, "The notion
of security for probabilistic cryptosystems," SIAM J.
of Computing, April 1988.

[34] M. NAOR AND M. YUNG, "Public-key cryptosystems
provably secure against chosen ciphertext attacks,"
STOC 90.

[35] M. RABIN, "Digitahzed signatures and public-key func-
tions as intractable as factorization," MIT Laboratory
for Computer Science TR-212, January 1979.

[36] C. RACKOFF AND D. SIMON, "Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext
attack," Crypto 91.

[37] R. RIVBST, "The MD5 message-digest algorithm,"
IETF Network Working Group, RFC 1321, April 1992.

[38] R. RIVEST, A. SHAMIR, AND L. ADLEMAN, "A method
for obtaining digital signatures and public key cryp-
tosystems," CACM 21 (1978).

[39] RSA DATA SECURITY, INC., "PKCS #I: RSA Encryp-
tion Standard," June 1991.

[40] P. ROGAWAY AND B. BLAKLEY, "An asymmetric au-
thentication protocol," IBM Technical Disclosure Bul-
letin (1993).

[41] G. TSUDIK, "Message authentication with one-way
hash functions," IERE INFOCOM '92.

[42] H. WILLIAMS, "A modification of the RSA public key
encryption procedure," IEEE Transactions on Informa-
tion Theory, Vol. IT-26, No. 6, November 1980.

71

[43] A. YAO , "Theory and apphcations of trapdoor func-
tions," FOCS 82.

[44] Y. ZI-mNG AND J. SBB~.P~tY, "Practical approaches to
attaining security against adaptively chosen ciphertext
attacks," Crypto 92.

A Proofs for Encrypt ion

We present proofs of security for some of the encryption
schemes. We will assume (wlog) that for any algorithm
and any oracle for that algorithm, all queries made of
the oracle are distinct.

THE E(z) : f(r) [[G(r) ~ z SCHEME Is POLYNO-
MIALLY SECURE. The proof is by contradiction. Let
A = (F, A1) be an adversary that defeats the protocol;
infinitely often, it gains advantage A(k) for some inverse
polynomial A. We construct an algorithm M(f , d, y)
that, when (f , f - l , d) *-- G(I~); r *-- d(lk); y ~-- f(r),
manages significantly often to compute f - l (y) . Al-
gorithm M defines E based on f as specified by our
scheme. It simulates the oracle G in the natural way
(by itself flipping coins to answer queries) and samples
(too, ml) ~ Fa(E). If ever G is asked an r such that
f (r) = y, then M outputs r and halts. Otherwise,
the F(E) terminates and M chooses a ~- y [I s for
s ~-- {0, 1} I'~°1. Then M simulates A~(E, mo, ml ,a) ,
watching the oracle queries that A1 makes to see if there
is any oracle query r for which f (r) = y. If there is, M
outputs r. Let Ak be the event that A1 asks the query
r = f - l (y) . A1 has no advantage in distinguishing mo
and ml in the case that A1 does not ask for the image
of G at r. So

1/2 + A(k) = Pr [A succeeds I A~]. Pr [Ak] +

Pr [A succeeds Pr [9

is at most Pr [A~] + 1/2. Thus Pr [Ak] > A(k) must be
nonnegligible, and M succeeds nonnegligibly often in
inverting f .

THE E(z) = f (r) [[G (r) ~ z][H (r z) SCHEME Is SE-
CURE AGAINST CHOSEN CIPHERTEXT ATTACK. Let
A = (F, At) be an RS-adversary that succeeds with
probability 1/2 + A(k) for some nonnegligible function
A(k). We construct an algorithm M(f, d, y) that com-
putes .f-~(y) non-negligibly often, where (f, f-~,d) ,--
G,(I~); r ,-- d(l~); y ,-- d(r). Algorithm M begins by
running F(E) where E is defined from f as specified
by our scheme. F takes three oracles, namely, G, H
and D G'H, whose queries are answered by F as fol-
lows. If a query r to G satisfies f(r) -- y then M
outputs r and halts; else it returns a random string

of the appropriate length. If a query rz to H satis-
fies f (r) = y then M outputs r and halts; else it re-
turns a random string of the appropriate length. To
answer query a II w II b to D G,H algorithm M sees
if it has already asked some query r of G and ru of
H, where a = f (r) and w = G(r) ~ u, and if so re-
turns u; else it returns invalid. If M completes the
running of F(E) then it obtains an output (too, m1).
NowMrunsA l (E , mo, m l , a) w h e r e a = y]] w II bfor
w ~- {0, 1}l'n01 and b ~-- {0, 1} ~. Once again, M must
simulate the behavior of queries to G, H, and D G,H.
This is done exactly as before, when F was being run
by M.

To see that this construction works, first consider
the "real" environment of A running with its oracles.
Let A~ denote the event that a II w IIb ~- F (E) , for
some a, w, and b, and A made some oracle call of
G(r) or H(ru) , where f (r) = a. Let Lk denote the
event that A1 asks D G,H some query a]1 w H b where
b = H(f - l (a) II w@G(f-l(a))) , but A1 never asked its
H-oracle for the image of f - l (a) [I w ~ G (f - l (a)) • Let
n(k) denote the total number of oracle queries made. It
is easy to verify that Pr [L~] < n(k)2 -~. It is also easy
to see that

er [A succeeds [L~ A A~] = 1/2.

Thus 1/2 + A(k) = Pr [A succeeds] is bounded above
by

Pr [A succeeds I L]Pr

Pr [A succeeds I L-~ A A~]Pr [L-~-k A A~]+

Pr [A succeeds I L~ A A~]Pr [L-~-~ A

which is at most n(k)2 -k + Pr [A~] + 1/2. And so

Pr >_ A(k) - n(k)2

Now, returning to the simulation of A by M, note that
M fails to behave like A with probability bounded by
Pr [L~], and so

Pr [M inverts f at y] > A(k) - n(k)2 -~+1

which is still nonnegligible. This completes the proof.

THE E(z) = f (r) I I G (r) ~ z II H(rz) SCHEME Is
NON-MALLEABLE. Intuitively, the presence of a valid
tag H(r%') in an encrypted string a' which is not a
copy of an encryption provided to the adversary A acts
as a "proof of knowledge" that A "knows" (can recover)
z'. Now suppose A, seeing ~ = a [I w [[b encrypt-
ing z = G(f- l (a)) @ w, manages to come up with the
encryption of a string z ' correlated to z. When r is
not asked of G, adversary A cannot so correlate z to
the (known value) z ' because of her having no idea of
the value of G(r) . Thus A must ask G the image of

7 2

r reasonably often. Whenever she does this, she has
effectively inverted the trapdoor permutation. The ar-
gument above can be formalized; we now sketch how to
do so.

Given an M-adversary ,4 = (F, A) and an interest-
ing relation p, computed by polynomial time machine
M, define the polynomial time algorithm A, (E , 7r) as
follows:

A, (E , Tr) computes z , ~-- lr(l~); r , ~-- d(l~);
I II

A(f , lr, a,) . If a', : a . , then A, outputs the
/ encryption of 0. Otherwise, A, outputs c~,.

We will prove that le(k) - e,(k)] is negligible, where
these quantities are as in the definition of non-
malleability. Some case analysis is required to show
this claim. It is based on considering two related ex-
periments, the first to define v(k) and the second to
define e,(k). We begin by describing Experiment 1.
Here G ~-- 2°°; H 4-- 2°°; (f , f - l , d) ~- G,(I~); then
E is our encryption algorithm as specified by f and
D is the corresponding decryption; 7r ~-- F°,H(E);

b = H(rz); a = a II ~ II b; and ¢x' ~ A(E, Tr, a)).
Write a' = a'w'b', r' = f - l (a ') , and z' = w' @G(r'), We
are interested in the value of M a , S (z , z', E, ~r) whose
expectation, which we denote E~[p(z, z')], is precisely
¢(k). In performing Experiment 1 we distinguish the
following cases:

Case I: a' : a. In this case, p(z, ~') = 0 by our
definition of an interesting relation.

Case 2: Assume Case 1 does not hold and .4 made no
H-oracle query of r '~' :

Case 2a. b' -- H(r%') . This event happens with prob-
ability 2 -~.

Case 2b. b' ~ H(r%') . In this case the encryption is
garbled, the decryption is 0, and p(~, ~') = 0 by our
definition of an interesting relation.

Case 3- Suppose neither Case 1 nor Case 2 holds.

Case 3a. For any string r '~ ' queried of H with
H(r'z ') = b', either f(r') ~ a, or else G(r') (~ z' ~ w'.
Then p(z, z ') = 0.

Case 3b. Here a ' is a valid encryption and A can ex-
tract r ' and z'. distinguish. Let Ax denote the proba-
bility of this case. We distinguish:

Case 3b(i). When A has not made a G-oracle call of r
and

Case 3b(i] M G,H asks a query r. Let e(k) be a negligi-
ble function bounding the probability of this case. Let
A2 be the probability of this case.

Case 3b(i)" M a ' s asks no query r.

Case 3b(ii). When A makes a G-oracle call of r. Let
e(k) be a negligible function bounding the probability
of this case.

We can upper-bound E1Lo(~, z')] by

E1Lo(. < Pr[Case 2hi. 2 - %
Pr[Case 3b]. ELo(z, z')lCase 3b(i)]+
Pr[Case 3b(ii)] _< 2 -~ + Al(e(k) + A2) + e(k).

We now describe Experiment 2. This is defined by
G 4-- 2°°; H ~-- 2°°; (f , f - l , d) ~-- ~,(1~); then E
is our encryption algorithm as specified by f and D
is the corresponding decryption; ~ ~-- Fu,~(E); z ~--
• "G'/C(lk); z . *--- 7ra'H(l~); r , ~-- d(l~); a. = f (r ,) ;
w = G (r .) • b. = = , . II w. II b,;
~, 4-- A(E, Tr, a,)). Write ~', = a~,w',b~,, r'. : f - l (a ') ,
and z~, = w~, @ G(r~,) if a , = a',, 0 otherwise. We
are interested in the value of M° 'H(z , zl,, E, ~r) whose
expectation, which we denote E2[p(z, z',)], is precisely
c.(k).

In analyzing Experiment 2 we perform the same
case analysis as above. An important observation is
that in the Experiments 1 and 2, the distribution on
third arguments to A is identical. Because of this,
Prl[Case 3b] = Pr2[Case 3hi. Also, it is easy to see
that E1Lo(z, x')]Case 3b(i)"] = E2Lo(z, z')lCase 3b(i)"]
One can then lower-bound E2[p(x, x',)[Case 3b(i)"] by

E~Lo(z, x',)] _> Pr[Case 3b(i)"].
E2[p(z, x',)lCase 3b(i)'] > (;h - 2e(k))A2.

Therefore [E[p(z, z')] - E[p(z, z~.)][_< 4e(k) + 2 -k, and
we are done.

73

