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ABSTRACT
As more sensitive data is shared and stored by third-party
sites on the Internet, there will be a need to encrypt data
stored at these sites. One drawback of encrypting data, is
that it can be selectively shared only at a coarse-grained level
(i.e., giving another party your private key). We develop a
new cryptosystem for fine-grained sharing of encrypted data
that we call Key-Policy Attribute-Based Encryption (KP-
ABE). In our cryptosystem, ciphertexts are labeled with
sets of attributes and private keys are associated with ac-
cess structures that control which ciphertexts a user is able
to decrypt. We demonstrate the applicability of our con-
struction to sharing of audit-log information and broadcast
encryption. Our construction supports delegation of private
keys which subsumes Hierarchical Identity-Based Encryp-
tion (HIBE).

Categories and Subject Descriptors: E.3 [Data En-
cryption]: Public key cryptosystems.

General Terms: Security.
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1. INTRODUCTION
There is a trend for sensitive user data to be stored by

third parties on the Internet. For example, personal email,
data, and personal preferences are stored on web portal sites
such as Google and Yahoo. The attack correlation center,
dshield.org, presents aggregated views of attacks on the
Internet, but stores intrusion reports individually submit-
ted by users. Given the variety, amount, and importance of
information stored at these sites, there is cause for concern
that personal data will be compromised. This worry is esca-
lated by the surge in recent attacks and legal pressure faced
by such services.

One method for alleviating some of these problems is to
store data in encrypted form. Thus, if the storage is compro-
mised the amount of information loss will be limited. One
disadvantage of encrypting data is that it severely limits the
ability of users to selectively share their encrypted data at a
fine-grained level. Suppose a particular user wants to grant
decryption access to a party to all of its Internet traffic logs
for all entries on a particular range of dates that had a source
IP address from a particular subnet. The user either needs
to act as an intermediary and decrypt all relevant entries
for the party or must give the party its private decryption
key, and thus let it have access to all entries. Neither one of
these options is particularly appealing. An important set-
ting where these issues give rise to serious problems is audit
logs (discussed in more detail in Section 7).

Sahai and Waters [32] made some initial steps to solving
this problem by introducing the concept of Attributed-Based
Encryption (ABE). In an ABE system, a user’s keys and ci-
phertexts are labeled with sets of descriptive attributes and
a particular key can decrypt a particular ciphertext only if
there is a match between the attributes of the ciphertext and
the user’s key. The cryptosystem of Sahai and Waters al-
lowed for decryption when at least k attributes overlapped
between a ciphertext and a private key. While this prim-
itive was shown to be useful for error-tolerant encryption
with biometrics, the lack of expressibility seems to limit its
applicability to larger systems.
Our Contribution. We develop a much richer type of
attribute-based encryption cryptosystem and demonstrate
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its applications. In our system each ciphertext is labeled by
the encryptor with a set of descriptive attributes. Each pri-
vate key is associated with an access structure that specifies
which type of ciphertexts the key can decrypt. We call such
a scheme a Key-Policy Attribute-Based Encryption (KP-
ABE), since the access structure is specified in the private
key, while the ciphertexts are simply labeled with a set of
descriptive attributes. 1

We note that this setting is reminiscent of secret sharing
schemes (see, e.g., [3]). Using known techniques one can
build a secret-sharing scheme that specifies that a set of
parties must cooperate in order to reconstruct a secret. For
example, one can specify a tree access structure where the
interior nodes consist of AND and OR gates and the leaves
consist of different parties. Any set of parties that satisfy
the tree can reconstruct the secret.

In our construction each user’s key is associated with a
tree-access structure where the leaves are associated with
attributes. 2 A user is able to decrypt a ciphertext if the at-
tributes associated with a ciphertext satisfy the key’s access
structure. The primary difference between our setting and
secret-sharing schemes is that while secret-sharing schemes
allow for cooperation between different parties, in our set-
ting, this is expressly forbidden. For instance, if Alice has
the key associated with the access structure “X AND Y”,
and Bob has the key associated with the access structure “Y
AND Z”, we would not want them to be able to decrypt
a ciphertext whose only attribute is Y by colluding. To
do this, we adapt and generalize the techniques introduced
by [32] to deal with more complex settings. We will show
that this cryptosystem gives us a powerful tool for encryp-
tion with fine-grained access control for applications such as
sharing audit log information.

In addition, we provide a delegation mechanism for our
construction. Roughly, this allows any user that has a key
for access structure X to derive a key for access structure Y,
if and only if Y is more restrictive than X. Somewhat surpris-
ingly, we observe that our construction with the delegation
property subsumes Hierarchical Identity-Based Encryption
[24, 20] and its derivatives [1].

1.1 Organization
We begin with a discussion of related work in Section 2.

Next, we give necessary background information and our
definitions of security in Section 3. We then present our first
construction and a proof of security in Section 4. We give
a construction for the large universe case in Section 5. We
then show how to add the delegation property in Section 6.
We follow with a discussion of how our system applies to
audit logs in Section 7. We discuss the application of our
construction to broadcast encryption in Section 8. Finally,
we discuss some interesting extensions and open problems
in Section 9.

1This contrasts with what we call Ciphertext-Policy
Attribute-Based Encryption (CP-ABE), where an access
structure (i.e. policy) would be associated to each cipher-
text, while a user’s private key would be associated with a
set of attributes. KP-ABE and CP-ABE systems are useful
in different contexts.
2In fact, we can extend our scheme to work for any access
structure for which a Linear Secret Sharing Scheme exists
(see full version of this paper for details [21]).

2. RELATED WORK
Fine-grained Access Control. Fine-grained access con-
trol systems facilitate granting differential access rights to
a set of users and allow flexibility in specifying the access
rights of individual users. Several techniques are known for
implementing fine grained access control.

Common to the existing techniques (see, e.g., [26, 19, 36,
27, 23, 28] and the references therein) is the fact that they
employ a trusted server that stores the data in clear. Ac-
cess control relies on software checks to ensure that a user
can access a piece of data only if he is authorized to do so.
This situation is not particularly appealing from a security
standpoint. In the event of server compromise, for example,
as a result of a software vulnerability exploit, the poten-
tial for information theft is immense. Furthermore, there is
always a danger of “insider attacks” wherein a person hav-
ing access to the server steals and leaks the information,
for example, for economic gains. Some techniques (see, e.g.,
[2]) create user hierarchies and require the users to share a
common secret key if they are in a common set in the hier-
archy. The data is then classified according to the hierarchy
and encrypted under the public key of the set it is meant
for. Clearly, such methods have several limitations. If a
third party must access the data for a set, a user of that
set either needs to act as an intermediary and decrypt all
relevant entries for the party or must give the party its pri-
vate decryption key, and thus let it have access to all entries.
In many cases, by using the user hierarchies it is not even
possible to realize an access control equivalent to monotone
access trees.

In this paper, we introduce new techniques to implement
fine grained access control. In our techniques, the data is
stored on the server in an encrypted form while different
users are still allowed to decrypt different pieces of data per
the security policy. This effectively eliminates the need to
rely on the storage server for preventing unauthorized data
access.

Secret-Sharing Schemes. Secret-sharing schemes (SSS)
are used to divide a secret among a number of parties. The
information given to a party is called the share (of the secret)
for that party. Every SSS realizes some access structure that
defines the sets of parties who should be able to reconstruct
the secret by using their shares.

Shamir [33] and Blakley [6] were the first to propose a con-
struction for secret-sharing schemes where the access struc-
ture is a threshold gate. That is, if any t or more parties
come together, they can reconstruct the secret by using their
shares; however, any lesser number of parties do not get any
information about the secret. Benaloh [5] extended Shamir’s
idea to realize any access structure that can be represented
as a tree consisting of threshold gates. Other notable secret-
sharing schemes are [25, 14].

In SSS, one can specify a tree-access structure where the
interior nodes consist of AND and OR gates and the leaves
consist of different parties. Any set of parties that satisfy the
tree can come together and reconstruct the secret. Therefore
in SSS, collusion among different users (or parties) is not
only allowed but required.

In our construction each user’s key is associated with a
tree-access structure where the leaves are associated with
attributes. A user is able to decrypt a ciphertext if the at-
tributes associated with a ciphertext satisfy the key’s access
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structure. In our scheme, contrary to SSS, users should be
unable to collude in any meaningful way.

Identity-Based Encryption and Extensions. The con-
cept of Attribute-Based Encryption was introduced by Sahai
and Waters [32], who also presented a particular scheme that
they called Fuzzy Identity-Based Encryption (FIBE). The
Fuzzy-IBE scheme builds upon several ideas from Identity-
Based Encryption [9, 34, 17]. In FIBE, an identity is viewed
as a set of attributes. FIBE allows for a private key for an
identity, ω, to decrypt to a ciphertext encrypted with an
identity, ω′, if and only if the identities ω and ω′ are close to
each other as measured by the “set overlap” distance met-
ric. In other words, if the message is encrypted with a set of
attributes ω′, a private key for a set of attributes ω enables
decrypting that message, if and only if |ω ∩ ω′| ≥ d, where
d is fixed during the setup time. Thus, FIBE achieves error
tolerance making it suitable for use with biometric identi-
ties. However, it has limited applicability to access control
of data, our primary motivation for this work. Since the
main goal in FIBE is error tolerance, the only access struc-
ture supported is a threshold gate whose threshold is fixed
at the setup time.

We develop a much richer type of attribute-based encryp-
tion. The private keys of different users might be associated
with different access structures. Our constructions support
a wide variety of access structures (indeed, in its most gen-
eral form, every LSSS realizable access structure), including
a tree of threshold gates.

Yao et. al. [18] show how an IBE system that encrypts to
multiple hierarchical identities in a collusion-resistant man-
ner implies a forward secure Hierarchical IBE scheme. They
also note how their techniques for resisting collusion attacks
are useful in attribute-based encryption. However, the cost
of their scheme in terms of computation, private key size,
and ciphertext size increases exponentially with the number
of attributes. We also note that there has been other work
that applied IBE techniques to access control, but did not
address our central concern of resisting attacks from collud-
ing users [35, 13].

3. BACKGROUND
We first give formal definitions for the security of Key-

Policy Attribute Based Encryption (KP-ABE). Then we give
background information on bilinear maps and our crypto-
graphic assumption.

3.1 Definitions

Definition 1 (Access Structure [3]). Let following

be a set of parties: {P1, . . . , Pn}. A collection A ⊆ 2{P1,...,Pn}

is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A.
An access structure (resp., monotone access structure) is a
collection (resp., monotone collection) A of non-empty sub-

sets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{∅}. The sets in
A are called the authorized sets, and the sets not in A are
called the unauthorized sets.

In our context, the role of the parties is taken by the
attributes. Thus, the access structure A will contain the
authorized sets of attributes. We restrict our attention to
monotone access structures. However, it is also possible
to (inefficiently) realize general access structures using our

techniques by having the not of an attribute as a separate
attribute altogether. Thus, the number of attributes in the
system will be doubled. From now on, unless stated oth-
erwise, by an access structure we mean a monotone access
structure.

An (Key-Policy) Attribute Based Encryption scheme con-
sists of four algorithms.

Setup This is a randomized algorithm that takes no input
other than the implicit security parameter. It outputs the
public parameters PK and a master key MK.
Encryption This is a randomized algorithm that takes as
input a message m, a set of attributes γ, and the public
parameters PK. It outputs the ciphertext E.
Key Generation This is a randomized algorithm that
takes as input – an access structure A, the master key MK
and the public parameters PK. It outputs a decryption key
D.
Decryption This algorithm takes as input – the ciphertext
E that was encrypted under the set γ of attributes, the
decryption key D for access control structure A and the
public parameters PK. It outputs the message M if γ ∈ A.

We now discuss the security of an ABE scheme. We define
a selective-set model for proving the security of the attribute
based under chosen plaintext attack. This model can be
seen as analogous to the selective-ID model [15, 16, 7] used
in identity-based encryption (IBE) schemes [34, 9, 17].

Selective-Set Model for ABE

Init The adversary declares the set of attributes, γ, that
he wishes to be challenged upon.
Setup The challenger runs the Setup algorithm of ABE
and gives the public parameters to the adversary.
Phase 1 The adversary is allowed to issue queries for
private keys for many access structures Aj , where γ /∈ Aj

for all j.
Challenge The adversary submits two equal length mes-
sages M0 and M1. The challenger flips a random coin b,
and encrypts Mb with γ. The ciphertext is passed to the
adversary.
Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined
as Pr[b′ = b] − 1

2
.

We note that the model can easily be extended to handle
chosen-ciphertext attacks by allowing for decryption queries
in Phase 1 and Phase 2.

Definition 2. An attribute-based encryption scheme is
secure in the Selective-Set model of security if all polynomial
time adversaries have at most a negligible advantage in the
Selective-Set game.

3.2 Bilinear Maps
We present a few facts related to groups with efficiently

computable bilinear maps.
Let G1 and G2 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G1 and e be a bilinear map,
e : G1 × G1 → G2. The bilinear map e has the following
properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab

2. Non-degeneracy: e(g, g) 	= 1.
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We say that G1 is a bilinear group if the group operation
in G1 and the bilinear map e : G1 × G1 → G2 are both
efficiently computable. Notice that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

3.3 The Decisional Bilinear Diffie-Hellman
(BDH) Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a genera-
tor of G1. The decisional BDH assumption [7, 32] is that no
probabilistic polynomial-time algorithm B can distinguish
the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tu-
ple (A = ga, B = gb, C = gc, e(g, g)z) with more than a
negligible advantage. The advantage of B is
���Pr[B(A, B, C, e(g, g)abc) = 0] − Pr[B(A, B, C, e(g, g)z) = 0]

���
where the probability is taken over the random choice of the
generator g, the random choice of a, b, c, z in Zp, and the
random bits consumed by B.

4. CONSTRUCTION FOR ACCESS TREES
In the access-tree construction, ciphertexts are labeled

with a set of descriptive attributes. Private keys are iden-
tified by a tree-access structure in which each interior node
of the tree is a threshold gate and the leaves are associated
with attributes. (We note that this setting is very expres-
sive. For example, we can represent a tree with “AND” and
“OR” gates by using respectively 2 of 2 and 1 of 2 threshold
gates.) A user will be able to decrypt a ciphertext with a
given key if and only if there is an assignment of attributes
from the ciphertexts to nodes of the tree such that the tree
is satisfied.

4.1 Access Trees
Access tree T . Let T be a tree representing an ac-

cess structure. Each non-leaf node of the tree represents
a threshold gate, described by its children and a threshold
value. If numx is the number of children of a node x and kx

is its threshold value, then 0 < kx ≤ numx. When kx = 1,
the threshold gate is an OR gate and when kx = numx, it
is an AND gate. Each leaf node x of the tree is described
by an attribute and a threshold value kx = 1.

To facilitate working with the access trees, we define a few
functions. We denote the parent of the node x in the tree by
parent(x). The function att(x) is defined only if x is a leaf
node and denotes the attribute associated with the leaf node
x in the tree. The access tree T also defines an ordering be-
tween the children of every node, that is, the children of a
node are numbered from 1 to num. The function index(x)
returns such a number associated with the node x. Where
the index values are uniquely assigned to nodes in the access
structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree with
root r. Denote by Tx the subtree of T rooted at the node x.
Hence T is the same as Tr. If a set of attributes γ satisfies
the access tree Tx, we denote it as Tx(γ) = 1. We compute
Tx(γ) recursively as follows. If x is a non-leaf node, evaluate
Tx′(γ) for all children x′ of node x. Tx(γ) returns 1 if and
only if at least kx children return 1. If x is a leaf node, then
Tx(γ) returns 1 if and only if att(x) ∈ γ.

4.2 Our Construction
Let G1 be a bilinear group of prime order p, and let g

be a generator of G1. In addition, let e : G1 × G1 → G2

denote the bilinear map. A security parameter, κ, will de-
termine the size of the groups. We also define the Lagrange
coefficient Δi,S for i ∈ Zp and a set, S, of elements in
Zp: Δi,S(x) =

�
j∈S,j �=i

x−j
i−j

. We will associate each at-

tribute with a unique element in Z
∗
p. Our construction fol-

lows.

Setup Define the universe of attributes U = {1, 2, . . . , n}.
Now, for each attribute i ∈ U , choose a number ti uniformly
at random from Zp. Finally, choose y uniformly at random
in Zp. The published public parameters PK are

T1 = gt1 , . . . , T|U| = gt|U| , Y = e(g, g)y .

The master key MK is:

t1, . . . , t|U|, y .

Encryption (M, γ, PK) To encrypt a message M ∈ G2

under a set of attributes γ, choose a random value s ∈ Zp

and publish the ciphertext as:

E = (γ, E
′
= MY s, {Ei = T s

i }i∈γ) .

Key Generation (T , MK) The algorithm outputs a key
that enables the user to decrypt a message encrypted under
a set of attributes γ if and only if T (γ) = 1. The algorithm
proceeds as follows. First choose a polynomial qx for each
node x (including the leaves) in the tree T . These polyno-
mials are chosen in the following way in a top-down manner,
starting from the root node r.

For each node x in the tree, set the degree dx of the poly-
nomial qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1. Now, for the root node r, set
qr(0) = y and dr other points of the polynomial qr ran-
domly to define it completely. For any other node x, set
qx(0) = qparent(x)(index(x)) and choose dx other points ran-
domly to completely define qx.

Once the polynomials have been decided, for each leaf
node x, we give the following secret value to the user:

Dx = g
qx(0)

ti where i = att(x) .

The set of above secret values is the decryption key D.

Decryption (E, D) We specify our decryption procedure
as a recursive algorithm . For ease of exposition we present
the simplest form of the decryption algorithm and discuss
potential performance improvements in the next subsection.

We first define a recursive algorithm DecryptNode(E, D, x)
that takes as input the ciphertext E = (γ, E′, {Ei}i∈γ), the
private key D (we assume the access tree T is embedded
in the private key), and a node x in the tree. It outputs a
group element of G2 or ⊥.

Let i = att(x). If the node x is a leaf node then:

DecryptNode(E,D, x) =

������
�����

e(Dx, Ei) = e(g
qx(0)

ti , gs·ti)

= e(g, g)s·qx(0) if i ∈ γ

⊥ otherwise

We now consider the recursive case when x is a non-leaf
node. The algorithm DecryptNode(E, D, x) then proceeds
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as follows: For all nodes z that are children of x, it calls
DecryptNode(E, D, z) and stores the output as Fz. Let Sx

be an arbitrary kx-sized set of child nodes z such that Fz 	=
⊥. If no such set exists then the node was not satisfied and
the function returns ⊥.

Otherwise, we compute:

Fx =
�

z∈Sx

F
Δ

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
�

z∈Sx

(e(g, g)s·qz(0))
Δ

i,S
′
x
(0)

=
�

z∈Sx

(e(g, g)s·qparent(z)(index(z)))
Δ

i,S
′
x
(0)

(by constr.)

=
�

z∈Sx

e(g, g)
s·qx(i)·Δ

i,S
′
x
(0)

= e(g, g)s·qx(0) (using polynomial interpolation)

and return the result.
Now that we have defined our function DecryptNode, the

decryption algorithm simply calls the function on the root of
the tree. We observe that DecryptNode(E,D, r) = e(g, g)ys

= Y s if and only if the ciphertext satisfies the tree. Since,
E′ = MY s the decryption algorithm simply divides out Y s

and recovers the message M .
We discuss how to optimize the decryption procedure in

the full version of this paper [21].

4.3 Proof of Security
We prove that the security of our scheme in the attribute-

based Selective-Set model reduces to the hardness of the
Decisional BDH assumption.

Theorem 1. If an adversary can break our scheme in the
Attribute-based Selective-Set model, then a simulator can be
constructed to play the Decisional BDH game with a non-
negligible advantage.

Proof: Suppose there exists a polynomial-time adversary
A, that can attack our scheme in the Selective-Set model
with advantage ε. We build a simulator B that can play the
Decisional BDH game with advantage ε/2. The simulation
proceeds as follows:

We first let the challenger set the groups G1 and G2 with
an efficient bilinear map, e and generator g. The challenger
flips a fair binary coin μ, outside of B’s view. If μ = 0,
the challenger sets (A, B, C, Z) = (ga, gb, gc, e(g, g)abc); oth-
erwise it sets (A, B,C, Z) = (ga, gb, gc, e(g, g)z) for random
a, b, c, z. We assume the universe, U is defined.

Init The simulator B runs A. A chooses the set of at-
tributes γ it wishes to be challenged upon.

Setup The simulator sets the parameter Y = e(A,B) =
e(g, g)ab. For all i ∈ U , it sets Ti as follows: if i ∈ γ, it
chooses a random ri ∈ Zp and sets Ti = gri (thus, ti = ri);
otherwise it chooses a random βi ∈ Zp and sets Ti = gbβi =
Bβi (thus, ti = bβi). It then gives the public parameters to
A.

Phase 1 A adaptively makes requests for the keys corre-
sponding to any access structures T such that the challenge
set γ does not satisfy T . Suppose A makes a request for the

secret key for an access structure T where T (γ) = 0. To
generate the secret key, B needs to assign a polynomial Qx

of degree dx for every node in the access tree T .
We first define the following two procedures: PolySat and

PolyUnsat.

PolySat(Tx, γ, λx) This procedure sets up the polynomials
for the nodes of an access sub-tree with satisfied root
node, that is, Tx(γ) = 1. The procedure takes an
access tree Tx (with root node x) as input along with
a set of attributes γ and an integer λx ∈ Zp.

It first sets up a polynomial qx of degree dx for the
root node x. It sets qx(0) = λx and then sets rest of
the points randomly to completely fix qx. Now it sets
polynomials for each child node x′ of x by calling the
procedure PolySat(Tx′ , γ, qx(index(x′))). Notice that
in this way, qx′(0) = qx(index(x′)) for each child node
x′ of x.

PolyUnsat(Tx, γ, gλx) This procedure sets up the polyno-
mials for the nodes of an access tree with unsatisfied
root node, that is, Tx(γ) = 0. The procedure takes an
access tree Tx (with root node x) as input along with
a set of attributes γ and an element gλx ∈ G1 (where
λx ∈ Zp).

It first defines a polynomial qx of degree dx for the
root node x such that qx(0) = λx. Because Tx(γ) = 0,
no more than dx children of x are satisfied. Let hx ≤
dx be the number of satisfied children of x. For each
satisfied child x′ of x, the procedure chooses a random
point λx′ ∈ Zp and sets qx(index(x′)) = λx′ . It then
fixes the remaining dx − hx points of qx randomly to
completely define qx. Now the algorithm recursively
defines polynomials for the rest of the nodes in the tree
as follows. For each child node x′ of x, the algorithm
calls:

– PolySat(Tx′ , γ, qx(index(x′))), if x′ is a satisfied
node. Notice that qx(index(x′)) is known in this
case.

– PolyUnsat(Tx′ , γ, gqx(index(x′))), if x′ is not a sat-

isfied node. Notice that only gqx(index(x′)) can be
obtained by interpolation as only gqx(0) is known
in this case.

Notice that in this case also, qx′(0) = qx(index(x′)) for
each child node x′ of x.

To give keys for access structure T , simulator first runs
PolyUnsat(T , γ, A) to define a polynomial qx for each node
x of T . Notice that for each leaf node x of T , we know
qx completely if x is satisfied; if x is not satisfied, then at
least gqx(0) is known (in some cases qx might be known com-
pletely). Furthermore, qr(0) = a.

Simulator now defines the final polynomial Qx(·) = bqx(·)
for each node x of T . Notice that this sets y = Qr(0) = ab.
The key corresponding to each leaf node is given using its
polynomial as follows. Let i = att(x).

Dx =

��
�

g
Qx(0)

ti = g
bqx(0)

ri = B
qx(0)

ri if i ∈ γ

g
Qx(0)

ti = g
bqx(0)

bβi = g
qx(0)

βi otherwise

Therefore, the simulator is able to construct a private key
for the access structure T . Furthermore, the distribution
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of the private key for T is identical to that in the original
scheme.

Challenge The adversary A, will submit two challenge
messages m0 and m1 to the simulator. The simulator flips
a fair binary coin ν, and returns an encryption of mν . The
ciphertext is output as:

E = (γ, E′ = mνZ, {Ei = Cri}i∈γ)

If μ = 0 then Z = e(g, g)abc. If we let s = c, then we
have Y s = (e(g, g)ab)c = e(g, g)abc, and Ei = (gri)c = Cri .
Therefore, the ciphertext is a valid random encryption of
message mν .

Otherwise, if μ = 1, then Z = e(g, g)z. We then have
E′ = mνe(g, g)z. Since z is random, E′ will be a random
element of G2 from the adversaries view and the message
contains no information about mν .

Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν′ of ν. If ν′ = ν the
simulator will output μ′ = 0 to indicate that it was given a
valid BDH-tuple otherwise it will output μ′ = 1 to indicate
it was given a random 4-tuple.

As shown in the construction the simulator’s generation
of public parameters and private keys is identical to that of
the actual scheme.

In the case where μ = 1 the adversary gains no informa-
tion about ν. Therefore, we have Pr[ν 	= ν′|μ = 1] = 1

2
.

Since the simulator guesses μ′ = 1 when ν 	= ν′, we have
Pr[μ′ = μ|μ = 1] = 1

2
.

If μ = 0 then the adversary sees an encryption of mν . The
adversary’s advantage in this situation is ε by definition.
Therefore, we have Pr[ν = ν′|μ = 0] = 1

2
+ ε. Since the

simulator guesses μ′ = 0 when ν = ν′, we have Pr[μ′ =
μ|μ = 0] = 1

2
+ ε.

The overall advantage of the simulator in the Decisional
BDH game is 1

2
Pr[μ′ = μ|μ = 0]+ 1

2
Pr[μ′ = μ|μ = 1]− 1

2
=

1
2
( 1
2

+ ε) + 1
2

1
2
− 1

2
= 1

2
ε.

Chosen-Ciphertext Security. Our security definitions
and proofs have been in the chosen-plaintext model. Simi-
lar to [32], we notice that our construction can be extended
to the chosen-ciphertext model by applying the technique
of using simulation-sound NIZK proofs to achieve chosen-
ciphertext security [31]. However, in Section 9 we describe
how our delegation mechanism can be used with the tech-
niques of Cannetti, Halevi, and Katz [16] to achieve a much
more efficient CCA-2 system.

5. LARGE UNIVERSE CONSTRUCTION
In our previous constructions, the size of public parame-

ters grows linearly with the number of possible attributes in
the universe. Combining the tricks presented in section 4
with those in the large universe construction of Sahai and
Waters [32], we construct another scheme which uses all el-
ements in Z

∗
p as the universe. Yet the size of public parame-

ters only grow linearly in a parameter n. The parameter n
is the maximum size of the set γ we can encrypt under. 3

3If we are willing to accept random oracles [4], it is possible
to overcome the size-limitation on γ by replacing the func-
tion T (X) in our construction (see Setup) by a hash function

As noted in [32], having large universe allows us to apply
a collision resistant hash function H : {0, 1}∗ → Z

∗
p and use

arbitrary strings, that were not necessarily considered dur-
ing public key setup, as attributes. For example we can add
any verifiable attribute, such as “Lives in Beverly Hills”, to
a user’s private key.

5.1 Description
Let G1 be a bilinear group of prime order p, and let g be a

generator of G1. Additionally, let e : G1 × G1 → G2 denote
the bilinear map. A security parameter, κ, will determine
the size of the groups. Also define the Lagrange coefficient
Δi,S for i ∈ Zp and a set, S, of elements in Zp, exactly as
before. The data will be encrypted under a set γ of n ele-
ments4 of Z

∗
p. Our construction follows.

Setup (n) Choose a random value y ∈ Zp and let g1 = gy.
Now choose a random element g2 of G1.

Next, choose t1, . . . , tn+1 uniformly at random from G1.
Let N be the set {1, 2, . . . , n + 1}. Define a function T , as:

T (X) = gXn

2

n+1�
i=1

t
Δi,N (X)

i .

Function T can be viewed as the function gXn

2 gh(X) for
some n degree polynomial h. The public parameters PK
are: g1, g2, t1, . . . , tn+1 and the master key MK is: y.

Encryption (m,γ, PK) To encrypt a message m ∈ G2

under a set of attributes γ, choose a random value s ∈ Zp

and publish the ciphertext as:

E = (γ, E
′
= me(g1, g2)

s, E
′′

= gs, {Ei = T (i)s}i∈γ).

Key Generation (T , MK, PK) The algorithm outputs a
key which enables the user to decrypt a message encrypted
under a set of attributes γ, if and only if T (γ) = 1. The
algorithm proceeds as follows. First choose a polynomial qx

for each non-leaf node x in the tree T . These polynomi-
als are chosen in the following way in a top down manner,
starting from the root node r.

For each node x in the tree, set the degree dx of the poly-
nomial qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1. Now for the root node r, set
qr(0) = y and dr other points of the polynomial qr ran-
domly to define it completely. For any other node x, set
qx(0) = qparent(x)(index(x)) and choose dx other points ran-
domly to completely define qx.

Once the polynomials have been decided, for each leaf
node x, we give the following secret values to the user:

Dx = g
qx(0)
2 · T (i)rx where i = att(x)

Rx = grx

where rx is chosen uniformly at random from Zp for each
node x. The set of above secret pairs is the decryption key
D.

(see [30] for details). This also improves the efficiency of the
system.
4With some minor modifications, which we omit for simplic-
ity, we can encrypt to all sets of size ≤ n.
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Decryption (E, D) As for the case of small universe, we
first define a recursive algorithm DecryptNode(E, D, x) that
takes as input the ciphertext E = (γ, E′, E′′, {Ei}i∈γ), the
private key D (we assume the access tree T is embedded
in the private key), and a node x in the tree. It outputs a
group element of G2 or ⊥ as follows.

Let i = att(x). If the node x is a leaf node then:

DecryptNode(E, D, x) =

���������
��������

e(Dx,E′′)
e(Rx,Ei)

=
e(g

qx(0)
2 ·T (i)rx ,gs)

e(grx ,T (i)s)

=
e(g

qx(0)
2 ,gs)·e(T (i)rx ,gs)

e(grx ,T (i)s)

= e(g, g2)
s·qx(0) if i ∈ γ

⊥ otherwise

We now consider the recursive case when x is a non-leaf
node. The algorithm DecryptNode(E, D, x) then proceeds
as follows: For all nodes z that are children of x, it calls
DecryptNode(E, D, z) and stores the output as Fz. Let Sx

be an arbitrary kx-sized set of child nodes z such that Fz 	=
⊥. If no such set exists then the node was not satisfied and
the function returns ⊥.

Otherwise, we compute:

Fx =
�

z∈Sx

F
Δ

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
�

z∈Sx

(e(g, g2)
s·qz(0))

Δ
i,S

′
x
(0)

=
�

z∈Sx

(e(g, g2)
s·qparent(z)(index(z)))

Δ
i,S

′
x
(0)

(by constr.)

=
�

z∈Sx

e(g, g2)
s·qx(0)·Δ

i,S
′
x
(0)

= e(g, g2)
s·qx(0) (using polynomial interpolation)

and return the result.
Now that we have defined our function DecryptNode, the

decryption algorithm simply calls the function on the root of
the tree. We observe that DecryptNode(E,D, r) = e(g, g2)

ys

= e(g1, g2)
s if and only if the ciphertext satisfies the tree.

Since, E′ = me(g1, g2)
s the decryption algorithm simply di-

vides out e(g1, g2)
s and recovers the message m.

For a security proof of this construction, see [21].

6. DELEGATION OF PRIVATE KEYS
In our large universe construction, individual users can

generate new private keys using their private keys, which
can then be delegated to other users. A user which has a
private key corresponding to an access tree T can compute a
new private key corresponding to ANY access tree T ′ which
is more restrictive than T (i.e., T ′ ⊆ T ). Thus, the users
are capable to acting as a local key authority which can
generate and distribute private keys to other users.

Computation of a new private key from an existing pri-
vate key is done by applying a set of basic operations on
the existing key. These operations are aimed at step by
step conversion of the given private key for an access tree T
to a private key for the targeted access tree T ′ (given that
T ′ ⊆ T ). In the following, a (t, n)-gate denotes a gate with
threshold t and number of children n. The operations are
as follows.

1) Adding a new trivial gate to T
This operation involves adding a new node y above an

existing node x. The new node y represents a (1, 1) threshold
gate which after adding becomes the parent of x. The former
parent of x (if x is not the root node), say z, becomes the
parent of y.

Since the threshold of y is 1, we are required to associate
a 0 degree polynomial qy with it such that qx(0) = qy(x))
and qy(0) = qz(y)). The second condition essentially fixes
qy and the first one is automatically satisfied since z was the
parent of x earlier. Hence, no changes to the private key are
required for this operation.
2) Manipulating an existing (t, n)-gate in T

This operation involves manipulating a threshold gate so
as to make the access structure more restrictive. The oper-
ation could be of the following three types.

2.1) Converting a (t, n)-gate to a (t+1, n)-gate with (t+1) ≤
n

Consider a node x representing a (t, n)-gate. Clearly, the
polynomial qx has the degree (t − 1) which has to be in-
creased to t. Define a new polynomial q′x as follows.

q′x(X) = (X + 1)qx(X)

Now, we change the key such that q′x becomes the new
polynomial of the node x. This is done as follows. For every
child y of x, compute the constant Cx = y) + 1. For every
leaf node z in the subtree5 Ty , compute the new decryption
key as

D′
z = (Dz)

Cx , R′
z = (Rz)

Cx

The above results in the multiplication of all the polynomials
in the subtree Ty with the constant Cx. Hence, q′y(0) =
(y)+1)qy(0) which is indeed a point on the new polynomial
q′x. Note that since q′x(0) = qx(0), no changes outside the
subtree Tx are required.

The above procedure effectively changes x from a (t, n)-
gate to a (t + 1, n)-gate and yields the corresponding new
private key.

2.2) Converting a (t, n)-gate to a (t + 1, n + 1)-gate
This procedure involves adding a new subtree (with root

say z) as a child of a node x while increasing the degree of
x by 1 at the same time. Let z be the vth child of x so that
z) = v. We shall change the polynomial qx to the following.

q′x(X) = (aX + 1)qx(X) where a =
−1

v

As in the previous operation, for every (existing) child y of
x, the polynomials in the subtree Ty are multiplied with the
appropriate constant Cx = a.y)+1. This ensures that q′y(0)
is indeed a point on q′x. Further, set qz(0) = 0 (= q′x(v)).
Given qz(0), keys can be created for the subtree Tz as in the
original key generation algorithm. Hence, the keys of the
subtrees of all the children (old as well as new) of the node
x have been made consistent with the new polynomial q′x,
thus achieving our goal.

2.3) Converting a (t, n)-gate to a (t, n − 1)-gate with t ≤
(n − 1)

This operation involves deleting a child y of a node x.
This can be easily achieved just by deleting decryption keys

5Recall that Ty denotes the subtree defined by y as its root.
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corresponding to all the leaves of Ty from the original de-
cryption key.
3) Re-randomizing the obtained key

Once we obtain a key for the desired access structure (by
applying a set of operations of type 1 and 2), we apply a final
re-randomization step to make it independent of the origi-
nal key from which it was computed. Re-randomization of
a node x with a (known) constant Cx is done as follows.
Choose a random polynomial px of degree6 dx such that
px(0) = Cx. Define the new polynomial q′x as q′x(X) =
qx(X) + px(X). We have to change the key such that q′x
becomes the new polynomial of node x. This is done by
recursively re-randomizing every child y of x with the con-
stant Cy = px(y)). If y is a leaf node, the new decryption
key corresponding to y is computed as follows.

D′
y = Dy .g2

Cy .T (i)ry , R′
y = Ry .gry

Where i = att(y) and ry is chosen randomly.
Now, re-randomization of the private key is done just by

re-randomizing the root node r with the constant Cr = 0.
The key obtained is the final key ready to be distributed to
other users.

In the following theorem, we prove that the above set of
operations is complete. That is, give a key for an access tree
T , this set of operations is sufficient to compute a key for
ANY access tree T ′ which is more restrictive than T .

Theorem 2 (Completeness Theorem). The given
set of operations is complete.

Proof: We can obtain a key for an access tree T ′ from
a key for T using the following general technique. Add a
new trivial gate x (using operation 1) above the root node
of T so that the new gate becomes the root node. Now we
apply operation 2.2 to x to convert it from a (1, 1)-gate to
a (2, 2)-gate. The new subtree added as a child of x corre-
sponds to the access tree T ′. Finally, we re-randomize the
key obtained (operation 3). This gives us a key for the access
structure (T AND T ′). However, since T ′ is more restric-
tive than T , this access structure is equivalent to T ′ itself.
Hence, we have obtained a key for the access structure T ′.
We point out that this is a general method for obtaining a
more restrictive access structure; in practice users will likely
use the delegation tools described above in a more refined
manner to achieve shorter private key sizes and faster de-
cryption times.

In the above setting, we may imagine an entity having multi-
ple private keys (procured from different entities). We note
that it is possible to use these multiple keys (for different
access structures) to compute a key for the targeted access
structure. Given n keys for the access trees T1, T2, ... ,Tn,
using an operation similar to operation 1, we can connect
them to obtain a single tree with an OR gate being the root
node and T1, T2, ... ,Tn each being a child subtree of that
OR gate. Thus, we obtain a single key for the access struc-
ture T = (T1 OR T2 OR ... OR Tn). This key can then be
used to generate new private keys.

6Recall that dx is the degree of the polynomial qx associated
with the node x

7. AUDIT LOG APPLICATION
An important application of KP-ABE deals with secure

forensic analysis: One of the most important needs for elec-
tronic forensic analysis is an “audit log” containing a de-
tailed account of all activity on the system or network to
be protected. Such audit logs, however, raise significant se-
curity concerns: a comprehensive audit log would become
a prized target for enemy capture. Merely encrypting the
audit log is not sufficient, since then any party who needs
to legitimately access the audit log contents (for instance
a forensic analyst) would require the secret key – thereby
giving this single analyst access to essentially all secret in-
formation on the network. Such problematic security is-
sues arise in nearly every secure system, and particularly
in large-scale networked systems such as the Global Infor-
mation Grid, where diverse secret, top secret, and highly
classified information will need to appear intermingled in
distributed audit logs.

Our KP-ABE system provides an attractive solution to
the audit log problem. Audit log entries could be annotated
with attributes such as, for instance, the name of the user,
the date and time of the user action, and the type of data
modified or accessed by the user action. Then, a forensic
analyst charged with some investigation would be issued a
secret key associated with a particular “access structure” –
which would correspond to the key allowing for a particular
kind of encrypted search; such a key, for example, would
only open audit log records whose attributes satisfied the
condition that “the user name is Bob, OR (the date is be-
tween October 4, 2005 and October 7, 2005 AND the data
accessed pertained to naval operations off the coast of North
Korea)”. Our system would provide the guarantee that even
if multiple rogue analysts collude to try to extract unautho-
rized information from the audit log, they will fail.

A more concrete example audit-log application of our ABE
system would be to the ArmyCERT program, which uses
netflow logs [29]. Basically, an entry is created for every
flow (e.g. TCP connection), indexed by seven attributes:
source IP address, destination IP address, L3 protocol type,
source port, destination port, ToS byte (DSCP), and input
logical interface (ifIndex). These aspects of every flow are in
the clear, and the payload can be encrypted using our ABE
system with these fields as attributes.

Note that in our scheme, we would need to assume that
the attributes associated with audit log entries would be
available to all analysts.7 This may present a problem in
highly secret environments where even attributes themselves
would need to be kept hidden from analysts. We leave the
problem of constructing KP-ABE systems where attributes
associated with ciphertexts remain secret as an important
open problem.

8. APPLICATION TO BROADCAST ENCR–
YPTION: TARGETED BROADCAST

We describe a new broadcast scenario that we call targeted
broadcast. Consider the following setting.

• A broadcaster broadcasts a sequence of different items,
each one labeled with a set of attributes describing

7We observe that this does not mean that the attributes
need be “public.” Our KP-ABE system’s ciphertexts could
be re-encrypted, with a key that corresponds to the general
clearance level of all analysts.
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the item. For instance, a television broadcaster might
broadcast an episode of the show “24”, and label this
item with attributes such as the name of the program
(“24”), the genre (“drama”), the season, the episode
number, the year, month, and date of original broad-
cast, the current year, month, and date, the name of
the director, and the name of the producing company.

• Each user is subscribed to a different “package”. The
user package describes an access policy, which along
with the set of attributes describing any particular
item being broadcast, determine whether or not the
user should be able to access the item. For example,
a television user may want to subscribe to a package
that allows him view episodes of “24” from either the
current season or Season 3. This could be encoded as
policy as (“24” AND (“Season:5” OR “Season:3”)).

The essential idea of Targeted Broadcast is to enjoy the
economies-of-scale offered by a broadcast channel, while still
being able to deliver programming targeted at the needs
or wishes of individual users. The growing acceptability of
such a model can be seen by the rising popularity of DVR
systems such as TiVo, which allow users to easily record only
the programming they want in order to watch it later. In
the case of television, taking the approach that we envision
here would allow for much more flexibility than just allowing
users to select what channels they like.

Our KP-ABE system naturally offers a targeted broadcast
system. A new symmetric key would be chosen and used to
encrypt each item being broadcast, and then the KP-ABE
system would be used to encrypt the symmetric key with the
attributes associated with the item being broadcast. The
KP-ABE system would precisely allow the flexibility we en-
vision in issuing private keys for the unique needs of each
user.

It is worth mentioning that handling such a situation with
the best known broadcast encryption schemes [10, 22] (which
allow encrypting to an arbitrary subset of users) is quite in-
efficient in comparison. The efficiency of such systems is de-
pendent on the size of the authorized user set or the number
of users in the system [10, 22], and would also require the
broadcaster to refer to its database of user authorizations
each time a different item is to be encrypted for broadcast.
In our scheme, the encryption of an item would depend only
on the properties of that item. The broadcaster could in
principle even forget about the levels of access granted to
each user after preparing a private key for the user.

9. DISCUSSION AND EXTENSIONS
We discuss various extensions to our scheme and open

problems.
Construction for any LSSS-realizable access struc-
ture. In our previous constructions, the access structure is
a tree consisting of threshold gates. In an attempt to ac-
commodate more general and complex access structures, we
construct a scheme that can support all LSSS-realizable ac-
cess structures. Since for every LSSS-realizable access struc-
ture, there exists a monotone span program that computes
the corresponding boolean function and vice versa [3], our
new construction supports all MSP-based access structures.
Details are given in the full version of this paper [21].

Achieving CCA-Security and HIBE from Delega-
tion. We briefly outline how we can achieve efficient CCA-2
security and realize the Hierarchical Identity-Based Encryp-
tion by applying delegation techniques to the large universe
construction.

To achieve CCA-2 security an encyrptor will chooses a
set γ of attributes to encrypt the message under and then
generate a public/private key pair for a one time signature
scheme. We let VK denote the bitstring represenation of
the public key and let γ′ be the set γ ∪ VK. The encryptor
encrypts the ciphertext under the attributes γ′ and then
signs the ciphertext with the private key and attaches the
signature and the public key description. Suppose a user
has a key for access structure X wishes to decrypt. The
user first checks that the ciphertext is signed under VK and
rejects the ciphertext otherwise. Then it creates an new
key for the access structure of “X AND CCA : VK”. By
similar arguments to those in Canetti, Halevi, and Katz [16]
this gives chosen-ciphertex security. We can also use other
methods [11, 12] to achieve greater efficiency.

We can realize a HIBE by simply managing the the as-
signment of attributes in a careful manner. For example, to
encrypt to the hierarchical identity “edu:ucla” one can en-
crypt to the set of attributes { “1-edu”, “2-ucla” }. Someone
who has the top-level key for edu will have a policy that re-
quires the attribute “1-edu” to be present. To delegate a key
for “edu:ucla” it simply creates a policy for “1-edu”AND “2-
ucla” using our delegation techniques. We view the fact that
a primitive HIBE follows so simply from our scheme as an
attestation to the power of these techniques.

Ciphertext-Policy Attribute-Based Encryption. In
this work, we considered the setting where ciphertexts are
associated with sets of attributes, whereas user secret keys
are associated with policies. As we have discussed, this set-
ting has a number of natural applications. Another possi-
bility is to have the reverse situation: user keys are associ-
ated with sets of attributes, whereas ciphertexts are associ-
ated with policies. We call such systems Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) systems. We note
that the construction of Sahai and Waters [32] was most
naturally considered in this framework. CP-ABE systems
that allow for complex policies (like those considered here)
would have a number of applications. An important exam-
ple is a kind of sophisticated Broadcast Encryption, where
users are described by (and therefore associated with) vari-
ous attributes. Then, one could create a ciphertext that can
be opened only if the attributes of a user match a policy.
For instance, in a military setting, one could broadcast a
message that is meant to be read only by users who have
a rank of Lieutenant or higher, and who were deployed in
South Korea in the year 2005. We leave constructing such
a system as an important open problem.

Searching on Encrypted Data. Our current construc-
tions do not hide the set of attributes under which the data
is encrypted. However, if it were possible to hide the at-
tributes, then viewing attributes as keywords in such a sys-
tem would lead to the first general keyword-based search on
encrypted data [8]. A search query could potentially be any
monotone boolean formula of any number of keywords. We
leave the problem of hiding the set of attributes as open.
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