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A Cryptanalytic T ime - Memory T rade-Off 
MARTIN E. HELLMAN, FELLOW, IEEE 

A&M&-A probabilistic method is presented wtdcb cryptanalyzes any 
N key cryptosystem in N2i3 operations with N2j3 words of memory 
(average vale) after a precomputatioo which requires N operations. If 
tke precomputation cao be performed in a reasooable time period (e.g* 
several years), the additional computation reqoired to recover e& key 
compares very favorably wltb the N operations reqdred by an exkaostive 
sear& and the N words of memory reqoircd by table lookup. When 
applied to the Data Enqption Standard (DES) osed lo block mode, it 
imlicatea tbat soluths should cost between $1 and $100 esck. Themethod 
worksinachosenplaintextattackand,itcipherbloekchainingisnotused, 
am also be osed in a ciphertext-only attack. 

I. INTRODUCTION 

M  ANY SEARCHING tasks, such as the knapsack 
[l] and  discrete logarithm problems [2], allow 

time-memory trade-offs. That is, if there are N possible 
solutions to search over, the time-memory trade-off 
allows the solution to be  found in T  operations (time) with 
M  words of memory, provided the time-memory product 
TM equals N. (Often the product is of the form cN log,N, 
but for simplicity we neglect logarithmic and  constant 
factors.) 

Cryptanalysis is a  searching problem that allows the 
two extremes of exhaustive search (T= N, M  = 1) and  
table lookup (T= 1, M= N), but until this paper  no  
general  time-memory trade-offs had  been  published. Let- 
ting m  and  t be parameters whose significance will be  
explained later and  neglecting precomputation, this tech- 
nique requires approximately M= m t words of memory 
and  T= t2 operations provided m t2= N. Letting m  = t = 
N ‘I3 results in M  = T= N2i3, which is much more cost 
effective than exhaustive search and  table lookup. If com- 
plexity is measured by M+ T  this technique reduces the 
effective key length by one-third when judged against 
exhaustive search. Breaking the 56-bit Data Encryption 
Standard (DES) with this method is less complex than 
doing an  exhaustive search on  a  38-bit key system. 

Complexity and  cost are not synonymous because 
memory costs more than time. But Section III shows that 
the cost per solution of breaking the DES .drops from 
approximately $5000  for exhaustive search to approxi- 
mately $10  using the time-memory trade-off. 

This time-memory trade-off is not as good  as those 
known for the knapsack and  discrete logarithm problems, 
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where M= T  = N ‘I2 can be  obtained and  where the pre- 
computation is no  more complex than the search itself, 
This indicates that improvements may well be  possible. 

Exhaustive search can be  accomplished under  a  known 
plaintext attack, while table lookup requires a  chosen 
plaintext attack [3]. In an  exhaustive search, the ciphertext 
can be  deciphered under  each key and  the result com- 
pared with the known plaintext. If they are equal, the key 
tried is probably correct. Occasional false alarms are 
rejected by additional tests. 

In table lookup, the cryptanalyst first enciphers some 
fixed plaintext PO under  each of the N possible keys to 
produce N ciphertexts. These are sorted and  stored in a  
table with their associated keys. 

When  a  user chooses a  new key K, he  is forced (in a  
chosen plaintext ,attack) to provide the cryptanalyst with 
the encipherment of PO 

ccl = %(~O)~ (1) 

where SK(*) denotes the enciphering operation under  key 
K. Because the table is sorted by ciphertext, the cryptana- 
lyst can find C, and  its associated key in at most log,N 
operations using a  binary search. Either by neglecting 
logarithmic factors or through hash coding [4], this will be  
counted as one  operation. 

The  N operations required to compute the table are not 
counted because they constitute a  precomputat ion which 
can be  performed at the cryptanalyst’s leisure. In the real 
world, we must ensure that the precomputat ion is not 
excessive, and  this will be  done  in Section III for the 
time-memory trade-off applied to the DES. 

Those unfamiliar with cryptography often question the 
validity of using a  known or chosen plaintext attack in 
assessing the strength of a  system. They think of a  cipher- 
text-only attack in which the cryptanalyst possesses only 
ciphertext and  some statistical knowledge of the plaintext. 
Aside from the fact that one  should be  conservative in 
assessing security levels, a  successful known or chosen 
plaintext attack can often be  mod ified to work under  the 
ciphertext-only assumptions. Reference [5] explains one  
such instance, where the parity bit in the American Na- 
tional Standard Code for Information Interchange 
(ASCII) allows a  known plaintext attack to be  turned into 
a  ciphertext-only attack. 

Similarly, the chosen plaintext assumption required for 
table lookup can often be  relaxed. If the DES is used in 
block mode,  the cryptanalyst can choose P,, to be  a  
frequent plaintext block, such as the ASCII representation 
of eight blanks. He then inspects the ciphertext for re- 
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peated blocks and uses his cryptanalytic approach on 
each repeated block. If there are ten repeated blocks, this 
only increases his effort by a factor of ten. The correct 
solution is easily determined through additional tests. 

r----- -1 

The cryptanalytic technique described in this paper 
requires the same kind of chosen plaintext attack as does 
a table lookup. We use the chosen plaintext assumption to 
simplify explanations, but it should be remembered that 
the time-memory trade-off can also be used with a 
ciphertext-only attack by looking for repeated ciphertext 
blocks and assuming that they correspond to the chosen 
(frequent) plaintext. 

f(K) 
Fig. 1. Construction of the function J 

sp, : x,~ .!- x,, f, x,~ f, ... f, X,, = EP, 

II. ITERATIVE APPROACH 

sidering a specific -cryptosystem, such as the DES. It 
The time-memory trade-off is best understood by con- 

operates on a 64-bit plaintext block P to produce a 64-bit 
ciphertext block C under the action of a 56-bit key: 

c= S,(P). (2) 

SP2 = X2& X2,1 X22f, ... ie X2,: EP2 

SP,’ X,oLX,,L X,$- “’ t X,t: EPm 

Letting PO be a fixed plaintext block, define 

fW=R[ WPO)]~ (3) 
where R is some simple reduction from 64 to 56 bits, such 
as dropping the last 8 bits of the ciphertext. Fig. 1 depicts 
the construction off. 

Computing f(K) is almost as simple as enciphering, but 
computing K from f(K) is equivalent to cryptanalysis. If 
the cryptosystem is secure, f is therefore a one-way func- 
tion [3]. The time-memory trade-off described in this 
paper applies to inverting any one-way function, not just 
those derived from cryptosystems. 

As part of the precomputation, the cryptanalyst chooses 
m starting points, SP,, SP,, * * + , SP,, each an independent 
random variable drawn uniformly from the key space 
{ 1,2, * * * ,N}. For 1 <i<m he lets 

xi, = SP, (4) 
and computes 

xjj =f(xi,j- I), 1 <j<t (5) 
as depicted in Fig. 2. The parameters m and t are chosen 
by the cryptanalyst to trade-off time against memory, as 
discussed below. 

If Y, = EP,, either K= Xi,,... i (i.e., K is in the next to last 

Fig. 2. 

column of Fig. 2), or EP, has more than one inverse 

Matrix of images under J 

image. We refer to this latter event as a false alarm. If 
Y, = EP,, the cryptanalyst therefore computes Xi,,- i and 
checks if it is the key, for example by seeing if it deciphers 

If Y, is not an endpoint the key is not in the next to the 

Co into Pw Because all intermediate columns in Fig. 2 
were discarded to save memory, the cryptanalyst must 
start at SP, and recompute Xi,i,Xi,2,. . . , etc. until he 

last column in Fig. 2. (If it were, Y,, which is its image 
under f, would be an endpoint.) 

reaches Xi,, _ i . 

The last element or endpoint in the ith chain (or row) is 
denoted by EP,. Clearly 

EP, = f ‘(SP,). (6) 
To reduce memory requirements, the cryptanalyst dis- 

cards all intermediate points as they are produced and 
sorts the { SP,, EP,}y= , on the endpoints. The sorted table 
is stored as the result of this precomputation. 

Now suppose someone chooses a key K and the crypt- 
analyst intercepts or is given 

co = MPO). (7) 
He can apply the reduction operation R to obtain 

Y,=R(C,)=f(K). (8) 
He can check if Y, is an endpoint in one “operation” 
because the {(SP,,EP,)} are sorted on the endpoints. 

If Y, is not an endpoint or a false alarm occurred, the 
cryptanalyst computes 

y2 =f(Y,) (9) 

and checks if it is an endpoint. If it is not, the key is not in 
the t - 2nd column of Fig. 2, while if Y,= EP,, the cryp- 
tanalyst checks if Xi,,-2 is the key. In a similar manner, 
the cryptanalyst computes Y, = f( Y2), . - . , Y, = f( Y,- 1) to 
check if the key is in the t - 3rd, * e * , or 0th column of Fig. 
2. 

If all mt elements in the 0th through t - 1st columns of 
Fig. 2 are different and if K is chosen uniformly from all 
possible values, the probability of success P(S) would be 
mt/N. Only m words of memory and t operations are 
required, so the time-memory product has come into 
play. An exhaustive search with t operations has only 
P(S) = t/N, while a table lookup with m words of mem- 
ory has only P(S) = m/N. 

If the matrix in Fig. 2 has some overlap, but a fixed 
fraction of distinct elements, the probability of success is 
only lowered by the same fixed fraction. A mild amount 
of overlap therefore can be tolerated in the matrix without 
affecting the basic gain inherent in the time-memory 
trade-off. This analysis also neglects other constant and 
logarithmic factors (e.g., it counts an encipherment, reduc- 
tion operation, and check for Y, equal to an endpoint as 
one operation). 

Theorem: If f(*) is modeled as a random function 
mapping the set { 1,2,. . . ,N} into itself, and if the key K 
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is chosen uniformly from this same set, then the probabil- with the bound.  If there were no  overlap at all, P(S) 
ity of success is bounded  by would have been  9.8 percent. 

m  t-1 
P(S)>(l/N) x 2  [(N-it)/N]‘+‘. (10) j=lj=f) 

Remark I: Equation (10) indicates that for a  fixed 
value of N there is not much to be  gained by increasing m  
or t beyond the point at which m t2 = N. Because [(N - 
it)/N] j+‘& exp( - ijt/N), the last term is closely ap- 
proximated by exp( - m t2/N) and  when m t2>N most 
terms will be  small. (Most will have values of i and  j 
which are a  significant fraction of m  and  t, respectively.) 
If m t2< N, each term in (10) is close to one  and  (10) 
reduces to 

P(S) >mt/N, (11) 
which is also an  upper  bound  so there is negligible over- 
lap. Increasing either m  or t then produces a  significant 
effect. If m t2= N, with both m  and  t large, then (10) can 
be. numerically evaluated and  equals 0.80mt/ N to two 
significant figures. (Approximating the sum by an  integral 
and  scaling m  and  t shows that the fractional efficiency, 
0.80, is independent of m  and  t so long as the product m t2 
is unaltered.) Operat ing at m t2 = N therefore increases the 
expected cryptanalytic effort by at most the small con- 
stant factor l/0.80= 1.25. We  will often neglect this slight 
increase in cryptanalytic effort. Numerical evaluation of 
(10) can be  avoided at the expense of some looseness. 
Approximating each term by exp( - ijt/N), lower bound-  
ing these by exp( - it2/N) and  summing predicts an  
efficiency of I- exp( - 1) = 0.63 when m t2 = N and  m  and  
t are both large. A slightly more complex bound  suggested 
by one  of the reviewers predicts an  efficiency of 3/4= 
0.75 when m t2= N and  is a  true lower bound.  

Remark 2: A secure cryptosystem is a  good  pseudoran-  
dom number  generator so mode ling f(*) as a  random 
function makes intuitive sense. As will be  seen from the 
proof, f(*) need only be  random so far as its cycle struc- 
ture (i.e., the lengths of its cycles and  associated “tails”) is 
concerned. This is a  much weaker condition. 

Also, to a  large extent, the random function assumption 
increases the expected effort and  is therefore conservative. 
If f(e) tended to have longer than average cycles, less 
overlap would occur. In the lim it, if f(*) had one  cycle of 
length N then the starting and  endpoints could be  spaced 
N*i2 apart and  completely cover the key space with 
M= T= N’12, a  significant improvement over the N2j3 
complexity under  the random function assumption. 

If f(*) had the other extreme of degeneracy,  f(K) = K 
for all K, then cryptanalysis would be  even more trivial. 
There are cycle structures which ruin the time-memory 
trade-off, but it is hard to see how one  could obtain them 
with a  secure cryptosystem. 

As a  check on  the validity of (lo), we ran a  small test 
on  the DES reduced to a  IO-bit key (N= 1024)  with 
m  = t = 10. The  lower bound  predicts that P(S) > 7.7 per- 
cent, and  with 20  different R functions we obtained a  
range of 6.8 percent to 9.1 percent, in excellent agreement 

Remark 3: Equation (10) indicates that P(S) will be  
small for typical values of m  and  t. For example, if 
m  = t = N ‘i3 then P(S) 2  1  /(N ‘i3). This is overcome by 
generat ing O(N ‘i3) different tables with different choices 
for R. If the first table does not produce a  success, the 
second table is tried, etc. New choices of R are valuable 
because their cycle structures are independent of past 
tables, so a  point repeated in two tables does not imply a  
repeated row. 

Even if R is restricted to be  a  mapp ing which just 
chooses an  ordered subset of 56  bits out of the ciphertext’s 
64  bits there are (64!)/(8!)=3 x lOa choices for R. If the 
cryptosystem is a  good  pseudorandom number  generator 
even such m inor changes in R will make the cycle struc- 
tures of the associated f(*) functions independent.  This 
was done  in the small DES simulation and  P(S) = 81.3 
percent overall coverage was obtained with 20  tables. If 
the coverage of each table was independent of the others, 
then 80.7 percent coverage was predicted from the indi- 
vidual P(S). There was a  slight positive bias because the 
200  starting points for the 20  tables were taken to be  the 
first 200  integers. This mod ification from random selec- 
tion of the starting points reduces the expected search 
effort but is more difficult to analyze. 

Proof of Theorem: The  proof is closely related to the 
birthday problem [6, p. 331. Letting A denote the subset of 
keys covered by the first t columns of F ig. 2  (i.e., not 
including the endpoints) we have 

P(S)=EIA(/N, W I 

where IA) denotes the number  of elements in A. Letting 
Z(X) denote the indicator function of the event X, 

m  t-1 
P(S)=E 2  x l{X,is new}/N 

j=] j=o 

m  t-1 

= js, jxo Pr(Xu is new> / N  (13) 

where a  point being “new” means it has not occurred in a  
previous row or thus far in its row. Using 

Pr(Xg is new) 
> Pr(XiO,Xil, . * . ,X0 are all new) 

= Pr (Xi, is new) Pr (Xi, is newlXio is new) * * * 
Pr(Xti is newIXiO,Xil;..,Xij-, arenew) 

(14) 

I N-IAiOl N-IAiOl-l N- IAid -j 
**’ N N N ’ 

when A, denotes the set of elements covered thus far. 
Clearly each factor in (14) is larger than (N - it)/N since 
there are at most t different elements in each row. There- 
fore 

Pr(X,is new) > [(N- it)/N]‘+’ (15) 
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and 
m  r-1 

P(S) > (l/N) 2 2 [(N- it)/N]‘+‘. 
i=l j=O 

completing the proof. 

To obtain the N213 complexity claimed earlier, set m  = t 
= N ‘/3 so that P(S) is approximately N -‘/3 for a single 
table. Generate Nli3 ( or several times that number) of 
tables with different reduction mappings R. With high 
probability one of the tables will produce the correct 
answer, although occasionally a key will be chosen that is 
not included in the tables, and the method will fail to 
produce a solution. 

Overall there are M= N213 words of memory (Nil3 
tables, each with m  = N ‘I3 words), and the overall number 
of operations is also T= N *I3 (N iI3 operations per table). 
The different tables can be tried sequentially, with Nil3 
parallel processors, or anywhere in between. 

We must still show that the false alarm rate is not so 
high as to dominate the computation. 

Theorem: The expected number of false alarms per 
table tried, E(F), is bounded by 

E(F) <mt(t+ 1)/2N. (16) 
Remark: When a false alarm occurs, at most t opera- 

tions are required to rule it out, which is comparable to 
the normal computation required for computing 
y,, y*, * * . 9 Y,. If m t*= N and ~1, then the expected com- 
putation due to false alarms increases the expected com- 
putation by at most 50 percent. 

Proof Letting Fi,. denote the occurrence of a false 
alarm due to q = EP,, 

(17) 
i=lj=l 

$ can occur in j different ways: due to f(K) merging 
immediately with the ith row of the matrix, that is if 
f(K)=f’-j+‘(SP,), or merging after one iteration, that is if 
f(K) is not in the ith row of the matrix, but f*(K) equals 
f’-j+* (SPi); etc. E ac o t ese j different ways of causing h f h 
R’Y to occur has probability at most l/N because, up to 
the merging, K, f(K), etc. are independent random vari- 
ables uniformly distributed over { 1,2,. . . , N }. Therefore 

E(F)< $! 5 j/N i=l j-1 

= m t( t + 1)/2N, (18) 
completing the proof. 

III. HARDWARE IMPLEMENTATION 

The preceding ideas establish the time-memory trade- 
off from a theoretical viewpoint but, because of the higher 
cost of memory, it is necessary to look at specific hard- 
ware implementations to determine to what extent, if any, 
the technique produces a cost savings over exhaustive 

search. This section therefore estimates the cost of a 
machine which breaks the DES using the time-memory 
trade-off. The machine uses off-the-shelf hardware costing 
approximately $4 m illion and produces 100 solutions per 
day, with an average wait of one day between the time the 
problem is entered and the solution produced. The 
machine can also be used to effect the precomputation in 
approximately one year. 

If the machine is used, fully loaded, for five years after 
the precomputation then the equivalent cost per solution 
is $25. Other manufacturing and operating costs may 
increase this to $100 per solution, but use of less expensive 
components and larger values of m  may reduce the cost to 
as little as $1 per solution. The geometric m idpoint, $10 
per solution, is taken as an “order of magnitude” estimate. 

When compared to the estimated $5000 per solution 
cost [5] of exhaustive search, it is seen that the new 
technique is significantly cheaper. Further, the time- 
memory trade-off’s cost could be reduced if custom 
large-scale integrated (LSI) circuitry is allowed as in [5]. It 
should be remembered, however, that the time-memory 
trade-off does not work in a known plaintext attack if 
block chaining or cipher feedback is used, whereas ex- 
haustive search continues to be usable. Also the higher 
throughput of the time-memory machine (100 problems 
per day versus 2 problems per day in [5]) requires a larger 
number of problems to keep the machine fully loaded and 
realize its full cost advantage. 

The DES has N=256 = 7 X lOi keys. By rounding this 
to N = 1017, we can neglect overlap in the matrices be- 
cause (10) shows that approximately 80 percent of the 
points are distinct when m t*= N. Optimizing over m  and t 
is not a simple matter because there is no simple objective 
function. The values m  = lo5 and t = lo6 were selected 
after some trial and error as resulting in a reasonable 
machine cost, cost per solution, time to solution, and 
throughput. Using these values results in 

P(S)=mt/N=10-6, (19) 
so approximately 10’ tables are needed. Overall M= 10” 
words of memory are required, each 112-bits long (56 bits 
each for SP, and EP,), for a total memory requirement of 
1013 bits. A $20 magnetic tape can store on the order of 
10’ bits so 10 000 tapes are needed at a cost $0.2M. To 
read these in one day requires 100 tape drives. (The data 
transfer rate is then approximately 100x lo6 bits per sec- 
ond, or 1013 bits per day. Assigning 100 tapes to each 
drive also means a tape is changed every 15 m inutes per 
drive.) At a cost of $20 000 per drive this adds $2.OM to 
the system cost. 

Each tape drive has a semiconductor memory consist- 
ing of 625 16-kbit random access memory (RAM) chips, 
or 10’ bits per memory. This can store the m  = 10’ words 
needed for one table, at an approximate cost of $4 000 per 
memory ($6 per chip) or $0.4M total cost. 

Because there are t = lo6 points in a row of Fig. 2 and 
P(S) = 10m6, on the average it is necessary to compute 
lo’* values off(*) before achieving success. There are 100 



HELLMAN: CRYFTOANALYTIC TIME-MEMORY TRADE-OFF 

tape drive/memory units working in parallel, and there 
are approximately lo5 seconds in a day, so a DES unit 
must be able to implement the f(*) function in 10p5s= 10 
ps to achieve a one-day solution time. Fairchild has 
announced a DES chip set which will implement thef(*) 
function in approximately 5 ps (load a key and a plain- 
text, encrypt, and output the ciphertext). Initially it is 
selling for approximately $100 per unit but should reach 
$20 in quantity within a few years. Using the $100 figure 
to be conservative, each fast memory can have 100 DES 
units associated with it, each one working on a different 
problem. (Parallelism cannot speed up computation of 
successive iterations off(*).) This approximately equalizes 
the DES and other costs ($10 000 per drive for DES units) 
and does not overload the memory since there are more 
memory chips, and they can be accessed much faster than 
the DES units need data. There are some multiplexing 
and queueing problems, but these can be resolved easily 
because of the probabilistic nature of the search. If a  
small fraction of the memory accesses are delayed by 
queueing, it might be most cost effective to merely go on 
to the next iteration and forfeit that chance of success. 

The total parts cost is $3,6M. If depreciated over five 
years this is approximately $2500 per day, or $25 per 
solution since the machine works on 100 problems in 
parallel. While other manufacturing and operating costs 
might increase this to $100 per solution, the use of a  larger 
value of m  should decrease cost per solution (but increase 
machine cost). This is because the larger table uses more 
memory chips, allowing a commensurate increase in the 
number of DES units and the number of problems being 
solved in parallel. Of course, the cryptanalyst must have 
enough problems to keep the machine fully loaded if he is 
to realize this cost savings. 

It also should be possible to use less expensive compo- 
nents. For example, the $2.0 M  for 100 tape drives might 
be replaced by $0.1 M  for 100 video recorders used as 
inexpensive tape drives. The probabilistic nature of the 
computation allows us to tolerate occasional errors in the 
data, and the sequential nature of the accessed data 
eliminates the need for extremely rapid forward and re- 
verse speeds. 

The DES chip cost was conservative. If they can be 
obtained for $20 per unit, then 500 units can be interfaced 
to each tape drive/memory at no increase in projected 
cost, and 500 solutions would be produced each day. 
Memory costs are also falling rapidly. Taken together, 
these improvements indicate that the cost per solution 
might be as low as $1 in the near future. 

The precomputation is equivalent to an exhaustive 
search of the keyspace because there are approximately t 
tables, each requiring mt encipherments, for a  total of 
mt2 = N encipherments. A single Fairchild DES unit oper- 
ating at 5  ~LS per encipherment would require 11 000 years 
for the precomputation, but the above described machine 
with 10 000 units could complete it in 1.1 years. 

Because tape cost is a  small part of the overall system 
cost, the added cost to store several times the average 
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number of tables needed for a solution is unimportant, 
and the expected computation per solution is not increased 
if the tables are used cyclically. A new problem can be 
entered at any stage without affecting the average number 
of tables that it must try before achieving success. 

For similar reasons, it is possible to produce different 
tapes for different “targets”: using eight blanks as the 
chosen plaintext would be a good general choice, while 
“XYZ C&p” or “Login :” might work better for other 
targets. A special machze would be needed for doing 
ongoing precomputations, but it would consist primarily 
of 10 000 DES units and one tape drive so its parts cost 
would be approximately $1 .OM and not have a large effect 
on system cost. 

IV. CONCLUSION 

The time-memory trade-off was described for use with 
a block cipher, but the same approach works with a 
synchronous stream cipher [7]. The first k bits of 
keystream are taken as the f(K) function, where k is the 
number of bits of key. This can be done under a known 
plaintext attack. 

The method works on all systems in a chosen plaintext 
attack [7] but does not work with a known plaintext attack 
on a cipher feedback system [7] if the initial load of the 
shift register is random and varies between conversations. 
Proposed Federal standards suggest this precaution. 

Even a block cipher can foil the t ime-memory trade-off 
in a known plaintext attack through cipher block chaining 
[7], [8] or other techniques which introduce memory into 
the encipherment. Then, even when eight blanks occur in 
the plaintext, their encipherment depends on the preced- 
ing text. Even if the first block of text is fairly standard 
(e.g., “Login: “), this technique can be foiled by the 
transmission oFa random “indicator” which is used to 
affect the encipherment (e.g., it is taken as the 0th plain- 
text block). Again, proposed standards include provision 
for cipher block chaining with a random indicator. 

While this t ime-memory trade-off cryptanalytic tech- 
nique can be easily foiled, it does work on the DES in 
basic block mode, More importantly, it indicates that even 
when cipher block chaining or other techniques are 
added, a larger key size is needed to have a reasonable 
assurance of security. While table lookup and exhaustive 
search are currently infeasible on systems with 64-bit or 
larger key sizes, an N *I2 t ime-memory trade-off would 
push the minimum usable key size up to 128 bits. The 
N213 technique described here, coupled with the large 
number of N’12 time-memory tradeoffs known for other 
searching problems, indicates that valuable data should 
not be entrusted to a device with smaller key size. 
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Group Codes for the Gaussian Broadcast 
Channel w ith Two Receivers 

CHARLES P. DOWNEY AND JOHN K. KARLOF, MEMBER, IEEE 

two-receiver Abstract-The broadcast cbannelisa of a 
communication system where a single codeword is transmitted over two 
distinct Gaussian channels that have different signal-to-noise ratios. lhe 
receiver with the better signal-to-noise ratio decodes all of the information 
carried by the codeword, while the other receiver decodes only sume of the 
infomIstion. me concept of groap codes for the Gaas3ian broadW% 
channel is developed and applied to permutation codes for the Gmtssian 
broadcast cluumel. A  group code for the Gaussian biuuhstchannelisa 
group code for the single-user Gaussian channel in which a subgroup of the 
generating matrix group is used to partitfon the codewords into disj&lt 
subsets called &ads. Distinct clouds represent disthct mexqes for the 
noisier channel while the individuai a&words represent disthct v 
for the other channel. Tbe clouds share same of the dktance properties of 
group codes. Necessary and sufficient conditions are given for finding goad 
group codes for the Gaussian broadcast channel (in terms of min imum 
CliSWOe). 

I. INTRODUCTION 

T HE TWO-RECEIVER Gaussian broadcast channel 
is a model of a communication system where a single 

codeword is transmitted over two distinct Gaussian 
channels and is received by two receivers. The receivers 
have no contact with each other, and the channels have 
different signal-to-noise ratios. The receiver with the bet- 
ter signal-to-noise ratio decodes all of the information 
carried by the codeword, ‘while the other receiver decodes 
only some of the information. 

In 1972, Cover [3] formally introduced the concept of 
broadcast channel coding theory and discussed the prob- 
lem of finding the set of simultaneously achievable trans- 
m ission rates for the two channels. Using random coding 
arguments, Bergmans [l] established the capacity region 
of the two-receiver Gaussian broadcast channel. Recently, 
Heegard, dePedro, and Wolf [4] used permutation codes 
to achieve rates and error probabilities better than time 
sharing. .The purpose of this paper is to develop the 
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concept of a group code for the two-receiver Gaussian 
broadcast channel. 

A group code for the Gaussian broadcast channel is a 
group code for the single-user Gaussian channel in which 
a subgroup of the generating matrix group is used to 
partition the codewords into disjoint subsets called clouds. 
Distinct clouds represent distinct messages for the noisier 
channel, while the individual codewords represent distinct 
messages for the other channel. We prove that the clouds 
share some of the distance properties of group codes. For 
example, by defining the distance between two clouds to 
be the m inimum distance between any two codewords 
(one from each cloud), we show that the set of distances 
between any one cloud and the rest is independent of the 
cloud considered. We also examine necessary and 
sufficient conditions for finding good group codes for the 
Gaussian broadcast channel (in terms of m inimum dis- 
tance). 

In the next section we define the Gaussian broadcast 
channel and summarize some of the previous work in the 
area. Group codes for the single-user Gaussian channel 
are discussed in Section III, and in Section IV we in- 
troduce group codes for the Gaussian broadcast channel. 
In Section V we discuss permutation codes for the Gaus- 
sian broadcast channel and present some examples. The 
Appendix contains a brief summary of the group repre- 
sentation theory used in this paper. 

II. TWO-RECEIVER GAUSSIAN BROADCAST 
CHANNEL 

In Fig. 1, source 1 contains a library of equally likely 
messages I={a,,a,,*-- ,a,,}, one of which needs to be 
sent every T seconds to both receivers. Source 2 contains 
a library of equally likely messages J- {b,, b,, - . - , bnl}, 
one of which needs to be sent every T seconds to only 
receiver 1. Channel 1 has the higher signal-to-noise ratio. 
The encoder has a set X= {xi; - * ,xM} of M=n,n, 
codewords and a one-to-one encoding function I x J+X. 
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