CS548 Advanced Information Security Final Exam

Type of exam: Take home exam
Deadline: May 20th 16:00
Submission: TA (junhyunv@kaist.ac.kr) by e-mail.

(Note)
* Your program source and execution result (e.g. screen shot) of problems 3, 4 and 7 must be attached.

1. Consider the following linear recurrence over \(\mathbb{Z}_2 \) of degree four:
 \[
 z_{i+4} = (z_i + z_{i+1} + z_{i+2} + z_{i+3}) \mod 2,
 \]
 \(i \geq 0 \). For each of the 16 possible initialization vectors \(\langle z_i, z_{i+1}, z_{i+2}, z_{i+3} \rangle \in (\mathbb{Z}_2)^4 \), determine the period of the resulting keystream. (1.18, p.40)

2. Suppose we are told that the plaintext
 \textbf{breathtaking}
 yields the ciphertext
 \textbf{RUPOTENTOIFV}
 where the Hill Cipher is used (but \(m \) is not specified). Determine the encryption matrix. (1.23, p.42)

3. Suppose that we have the following 128-bit AES key, given in hexadecimal notation:
 \textbf{2B7E151628AED2A6ABF7158809CF4F3C}
 Construct the complete key schedule arising from this key. (3.5, p.114)

4. Compute the encryption of the following plaintext (given in hexadecimal notation) using the 10-round AES:
 \textbf{3243F6A8885A308D313198A2E0370734}
 Use the 128-bit key from the previous exercise. (3.6, p.115)

5. Prove that the RSA Cryptosystem is insecure against a chosen ciphertext attack. In particular, given a ciphertext \(y \), describe how to choose a ciphertext \(\hat{y} \neq y \), such that knowledge of the of the plaintext \(\hat{x} = d_K(\hat{y}) \), allows \(x = d_K(y) \), to be computed. (5.14, p.228)
6. This exercise illustrates another example of a protocol failure (due to Simmons) involving the RSA Cryptosystem; it is called the “common modulus protocol failure.” Suppose Bob has an RSA Cryptosystem with modulus n and encryption exponent b_1, and Charlie has an RSA Cryptosystem with (the same) modulus n and encryption exponent b_2. Suppose also that $gcd(b_1, b_2) = 1$. Now, consider the situation that arises if Alice encrypts the same plaintext x to send to both Bob and Charlie. Thus, she computes $y_1 = x^{b_1} \mod n$ and $y_2 = x^{b_2} \mod n$, and then she sends y_1 to Bob and y_2 to Charlie. Suppose Oscar intercepts y_1 and y_2, and performs the computations indicated in Algorithm 5.16. (5.16, p.229)

Algorithm 5.16: RSA COMMON MODULUS DECRYPTION(n, b_1, b_2, y_1, y_2)

1. $c_1 \leftarrow b_1^{-1} \mod b_2$
2. $c_2 \leftarrow (c_1 b_1 - 1) / b_2$
3. $x_1 \leftarrow y_1^{c_1} (y_2^{c_2})^{-1} \mod n$

return (x_1)

(a) Prove that the value x_1 computed in Algorithm 5.16 is in fact Alice’s plaintext x. Thus Oscar can decrypt the message Alice sent, even though the cryptosystem may be “secure.

(b) Illustrate the attack by computing x by this method if $n = 18721$, $b_1 = 43$, $b_2 = 7717$, $y_1 = 12677$, and $y_2 = 14702$.

7. Implement SHANKS’ ALGORITHM for finding discrete logarithms in \mathbb{Z}_p^*, where p is prime and α is primitive element modulo p. Use your program to find $log_{106} 12375$ in \mathbb{Z}_{24691}^* and $log_{26} 24388$ in \mathbb{Z}_{458009}^*. (6.1, p.275)

8. The field \mathbb{F}_{2^5} can be constructed as $\mathbb{Z}_2[x]/(x^5 + x^2 + 1)$. Perform the following computations in this field. (6.11, p.277)

(a) Compute $(x^4 + x^2) \times (x^3 + x + 1)$.
(b) Using the extended Euclidean algorithm, compute $(x^3 + x^2)^{-1}$.
(c) Using the square-and-multiply algorithm, compute x^{25}.

9. Suppose Alice is using the ElGamal Signature Scheme with $p = 31847, \alpha = 5, \beta = 25703$. Compute the values of k and α (without solving an instance of the Discrete Logarithm problem), given the signature $(23972, 31396)$ for the message $x = 8990$ and the signature $(23972, 20481)$ for the message $x = 31415$. (7.1, p.318)
10. Suppose Alice is using the Schnorr Identification Scheme where \(q = 1201, \ p = 122503, \ t = 10 \) and \(\alpha = 11538 \). (9.8, p.390)

(a) Verify that \(\alpha \) has order \(q \) in \(\mathbb{Z}_p^\times \).

(b) Suppose that Alice’s secret exponent is \(a = 357 \). Compute \(v \).

(c) Suppose that \(k = 868 \). Compute \(y \).

(d) Suppose that Bob issues the challenge \(r = 501 \). Compute Alice’s response \(y \).

(e) Perform Bob’s calculations to verify \(y \).